Yıl: 2020 Cilt: 29 Sayı: 4 Sayfa Aralığı: 276 - 290 Metin Dili: Türkçe DOI: doi:10.17827/aktd.855712 İndeks Tarihi: 09-05-2021

Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri

Öz:
Çeşitli ancak önemli işlevler üstlenmiş olan potasyum iyon kanalları, uyarılabilir hücrelerin işleyişi, apoptozun düzenlenmesi, damar düz kas tonusu, kardiyak aktivitenin sürdürülmesi, transmiter ve hormonların salınımı, hücre büyümesi ve farklılaşması dâhil olmak üzere çeşitli hücresel işlevlerde önemli rol oynar. Çalışmada, potasyum kanallarının paylaştığı genel özellikler ve ardından da her sınıfın belirli özellikleri tanıtıldı. Amacımız okuyucuların temel kavramları kavramasına, farklı bilim alanların potasyum kanal özelliklerine aşina olmasına, söz konusu kanalların yapısı ve işlevlerinin daha iyi anlaşılmasına yardımcı olmaktır. Bu derlemede, potasyum iyon kanallarının bugüne kadar bilinen moleküler yapısı, genel özellikleri ve hücre zarındaki lokalizasyonunun düzenlenmesiyle ilgili literatür bilgiler özetlenmiştir.
Anahtar Kelime:

Structure and General Properties of Potassium Ion Channels

Öz:
Potassium ion channels, which have undertaken various but important functions, play an important role in variouscellular functions, including the functioning of excitable cells, regulation of apoptosis, vascular smooth muscle tone,maintenance of cardiac activity, release of transmitters and hormones, cell growth and differentiation. The studyintroduced the general properties shared by potassium channels, followed by the specific properties of each class. Ouraim is to helper readers grasp the basic concepts, become familiar with the potassium channel properties of differentscientific areas, and better understand the structure and functions of these channels. In this review, the informationabout the molecular structure of potassium ion channels known so far, their general properties and the regulation oftheir localization in the cell membrane are summarized.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Tristani-Firouzi M, Chen J, Mitcheson JS, Sanguinetti MC. Molecular biology of K1 channels and their role in cardiac arrhythmias. Am J Med. 2001;110:50–59.
  • 2. Edward S, Humphries A, Dart C. Neuronal and cardiovascular potassium channels as therapeutic drug targets: Promise and pitfalls. Journal of Biomolecular Screening, 2015;20:1055–1073.
  • 3. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998;280:69–77.
  • 4. Catterall WA. Lipids carbohydrates membranes and membrane proteins. Ion channel protein superfamily. 2nd ed. 648-652. Encyclopedia of Biological Chemistry, 2013.
  • 5. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA et al. Nomenclature and molecular relationships of voltage-gated potassium channels. International union of pharmacology. LIII. Pharmacol. Rev. 2005;57:473-508.
  • 6. Emre M, Öcal I, Şan M. Endotelyal iyon kanalları ve işlevleri. Erciyes Üniv. Tıp Fak. Dergisi, 2004;26:186-193.
  • 7. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ıon channels and hereditary disease. Physiological Rev. 1999;79:1317-72.
  • 8. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 2002;186:99- 105.
  • 9. Abdul M, Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol. Rep. 2002;9:961-964.
  • 10. Elso CM, Lu X, Culiat CT, Rutledge JC, Cacheiro NL, Generoso WM et al. Heightened susceptibility to chronic gastritis, hyperplasia and metaplasia in Kcnq1 mutant mice. Hum. Mol. Genet. 2004;13:2813-2821.
  • 11. Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium, 2019;80:125-140.
  • 12. Medovoy D, Perozo E, Roux B. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Biochim Biophys Acta, 2016;1858:1722–1732.
  • 13. Kreusch A, Pfaffınger PJ, Stevens CF, Choe S. Crystal structure of the tetramerization domain of the shaker potassium channel, Nature, 1998;392:945-948.
  • 14. Treptow W, Maigret B, Chipot C, Tarek M. Coupled motions between pore and voltage-sensor domains: A model for shaker b, a voltage-gated potassium channel. Biophysical Journal, 2004;87:2365-2379.
  • 15. Labro AJ, Raes AL, Grottesi A, Hoorick DV, Sansom MSP, Snyders D. Kv channel gating requires a compatible S4-S5 linker and bottom part of S6, constrained by non-interacting residues. J Gen Physiol. 2008;132:667-680.
  • 16. Posson DJ, Selvin PR. The Shaker K+ Channel S4 Voltage Sensor Translates 10 Å during Gating. Neuron, 2008;59:98-109.
  • 17. Black JA, Kocsis JD, Waxman SG. Ion channel organization of the myelinated fiber. Trends in Neurosciences, 1990;13:48-54.
  • 18. Yost CS. Potassium channels. Anaesthesiology, 1999;90:1186-203.
  • 19. Leung YM. Voltage-gated K+ channel modulators as neuroprotective agents. Life Sciences, 2010;86:775-780.
  • 20. Kim DM, Nimigean CM. Voltage-gated potassium channels: A structural examination of selectivity and gating. Cold Spring Harb Perspect Biol. 2016;8:a029231.
  • 21. Grizel AV, Glukhov GS, Sokolova OS. Mechanisms of activation of voltage-gated potassium channels. Acta nature, 2014;6:10- 26.
  • 22. Munro G, Dalby-Brown W. Kv7 (KCNQ) Channel modulators and neuropathic pain. J Med Chem. 2007;50:2576–2582.
  • 23. Mackie AR, Byron KL. Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic ıntervention. Mol Pharmacol. 2008;74:1171-1179.
  • 24. Hu CL, Liu Z, Zeng XM, Liu ZQ, Chen XH, Zhang ZH et al. 4-aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons. Neuropharmacology, 2006;51:737-746.
  • 25. Fu XW, Wu SH, Brezden BL, Kelly JB. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus. J Neurophysiol, 1996;76:1121-32.
  • 26. Bartos DC, Grandi E, Ripplinger CM. Ion channels in the heart. Compr Physiol, 2015;5:1423-1464.
  • 27. Roden DM, Balser JR, George ALJ and Anderson ME. Cardiac ion channels. Annu. Rev. Physiol. 2002;64:431-475.
  • 28. Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol rev. 2005;85:1205-1253. Grant AO. Cardiac ion channels. Circ Arrhythmia Electrophysiol. 2009;2:185-194.
  • 29. Martin TF, Jun C, John SM, Michael CS. Molecular biology of K+ channels and their role in cardiac arrhythmias. Am J Med. 2001;110:50-59.
  • 30. Li J, Meredith LB, Mark LB. Inward-rectifying potassium (kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life. J. Neurosci. 2013;33:3352-3362.
  • 31. Jan LY, Jan YN. Voltage-gated and inwardly rectifying potassium channels. J. Physiol. 1997;505:267-282.
  • 32. Rudy B. Diversity and ubiquity of K channels. Neuroscience, 1988;25:729-49.
  • 33. Oliver D, Hahn H, Antz C, Ruppersberg JP, Fakler B. Interaction of permeant and blocking ions in cloned inward-rectifier K+ channels. Biophys J. 1998;74:2318-2326.
  • 34. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovascular Research, 1999;42:377-390.
  • 35. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291-366.
  • 36. Jackson WF. Potassium channels in the peripheral microcirculation, Microcirculation J. 2005;12:113-127.
  • 37. San G, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S. International union of pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol. Rev. 2005;57:527-540.
  • 38. Plant LD, Rajan S, San G. K2P channels and their protein partners. Curr. Opin. Neurobiol. 2005;15:326-333.
  • 39. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M et al. TREK-1, a Kş channel involved in neuroprotection and general anesthesia. EMBO J. 2004;23:2684-2695.
  • 40. Kemp PJ, Peers C, Lewis A, Miller P. Regulation of recombinant human brain tandem P domain Kş channels by hypoxia: a role for O2 in the control of neuronal excitability? J Cell Mol Med. 2004;8:38–44.
  • 41. Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD.Acid-sensitive two-pore domain (K2P) channels in mouse taste buds. J Neurophysiol. 2004;92:1928-1936.
  • 42. Chemin, J, Patel A, Duprat F, Zanzouri M, Lazdunski M, Honoré E. Lysophosphatidic acid-operated K+ channels. J Biol Chem. 2005;280:4415-4421.
  • 43. Goonetilleke L, Quayle J. TREK-1 K+ Channels in the Cardiovascular System: Their Significance and Potential as a Therapeutic Target. Cardiovasc. Ther. 2012;30:23–29.
  • 44. Gierten J, Ficker E, Bloehs R, Schlomer K, Kathofer S, Scholz E et al. Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. British Journal of Pharmacology, 2008;154:1680-1690.
  • 45. Enyedi P, Czirjak G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90(2):559-605.
  • 46. Asif RP, Nancy JR. Two-pore domain K+ channels. hypertension. 2011;58:539-541.
  • 47. Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I et al. The pore structure and gating mechanism of K2P channels. EMBO J. 2011;30(17):3607-3619.
  • 48. Kim D. Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des. 2005;11:2717-2736.
  • 49. Mathie A. Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol. 2007;578:377-38.
  • 50. Hughes S, Russell GF, Stuart NP, Mark WH. Expression and localisation of twopore domain (K2P) background leak potassium ion channels in the mouse retina. Scientific reports, 2017;7:46085.
  • 51. Kshatri AS, Alberto GH, Teresa G. Physiological roles and therapeutic potential of Ca2+ activated potassium channels in the nervous system. Frontiers in Molecular Neuroscience, 2018;11(:1-18.
  • 52. Emre M. Ağrı patofizyolojisinde voltaj kapılı kalsiyum kanallarının rolü. Kafkas J Med Sci. 2018;8:140-148.
  • 53. McManus OB, Magleby KL. Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle. Journal of Physiology, 1991;443:739-777.
  • 54. McManus OB. Calcium-activated potassium channels: regulation by calcium. J Bioenerg Biomembr. 1991;23:537-60.
  • 55. Rudy B. Diversity and ubiquity of K channels. Neuroscience, 1988;25:729-49.,
  • 56. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International union of pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. 2005;57:463-472.
  • 57. Linn CL, Gafka AC. Modulation of a voltage-gated calcium channel linked to activation of glutamate receptors and calcium-induced calcium release in the catfish retina. Journal of Physiology, 2001;535:47-63.
  • 58. Dart C, Standen NB. Activation of ATP-dependent Kş channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol. 1995;483:29-39.
  • 59. Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. British Journal of Pharmacology. 2014;171:12-23
  • 60. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion The Journal of Clinical Investigation, 2005;115(8):2047-2058.
  • 61. Aronson JK. Potassium channels in nervous tissue. Biochem Pharmacol. 1992;43:11-4.
  • 62. Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 1999;514:327-341.
  • 63. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science, 1990;247:852–854.
  • 64. Misaki N, Mao X, Lin YF, Suga S, Li GH, Liu Q et al. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release. J Pharmacol Exp Ther. 2007;322:871-8.
  • 65. Pan Z, Huang J, Cui W, Long C, Zhang Y, Wang H .Targeting Hypertension With a New ATP-Sensitive Potassium Channel Opener Iptakalim. J Cardiovasc Pharmacol. 2010;56:215-28.
  • 66. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science, 1997;278:114-117.
APA emre m (2020). Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. , 276 - 290. doi:10.17827/aktd.855712
Chicago emre mustafa Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. (2020): 276 - 290. doi:10.17827/aktd.855712
MLA emre mustafa Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. , 2020, ss.276 - 290. doi:10.17827/aktd.855712
AMA emre m Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. . 2020; 276 - 290. doi:10.17827/aktd.855712
Vancouver emre m Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. . 2020; 276 - 290. doi:10.17827/aktd.855712
IEEE emre m "Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri." , ss.276 - 290, 2020. doi:10.17827/aktd.855712
ISNAD emre, mustafa. "Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri". (2020), 276-290. https://doi.org/doi:10.17827/aktd.855712
APA emre m (2020). Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. Arşiv Kaynak Tarama Dergisi, 29(4), 276 - 290. doi:10.17827/aktd.855712
Chicago emre mustafa Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. Arşiv Kaynak Tarama Dergisi 29, no.4 (2020): 276 - 290. doi:10.17827/aktd.855712
MLA emre mustafa Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. Arşiv Kaynak Tarama Dergisi, vol.29, no.4, 2020, ss.276 - 290. doi:10.17827/aktd.855712
AMA emre m Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. Arşiv Kaynak Tarama Dergisi. 2020; 29(4): 276 - 290. doi:10.17827/aktd.855712
Vancouver emre m Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri. Arşiv Kaynak Tarama Dergisi. 2020; 29(4): 276 - 290. doi:10.17827/aktd.855712
IEEE emre m "Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri." Arşiv Kaynak Tarama Dergisi, 29, ss.276 - 290, 2020. doi:10.17827/aktd.855712
ISNAD emre, mustafa. "Potasyum İyon Kanallarının Yapısı ve Genel Özellikleri". Arşiv Kaynak Tarama Dergisi 29/4 (2020), 276-290. https://doi.org/doi:10.17827/aktd.855712