Yıl: 2019 Cilt: 29 Sayı: 2 Sayfa Aralığı: 253 - 257 Metin Dili: İngilizce DOI: 10.29133/yyutbd.494677 İndeks Tarihi: 11-05-2021

Responses of Apple Plants to Salinity Stress

Öz:
Salt stress is a common agricultural problem that affects both quantity and quality of fruit crops. Responses of rootstocks against salinity possess importance due to demonstrating stress tolerance. Little is known about the early responses of apple plants to short term salinity. In our study, we investigated the physiological responses of an apple plant cv Fuji grafted onto M9 and MM106 rootstocks against 35 mM NaCl stress. After 1 month, salt treated plants exhibited decreased chlorophyll content (SPAD). Salt stress decreased stomatal conductance values of Fuji/M9 and Fuji/MM106 by 17.0 and 30.1%, respectively when compared with own control. Membrane permeability decreased by 21.3 and 22.0% in salt-treated Fuji/M9 and Fuji/MM106, respectively compared with own control. Reduction due to salt stress in SPAD value, stomatal conductance and leaf relative water content and increase in leaf temperature and membrane permeability were greater in Fuji/MM106 than in Fuji/M9, suggesting that under short term salinity toxic effects of NaCl were less in Fuji/M9.
Anahtar Kelime:

Elma Bitkilerinin Tuz Stresine Tepkiler

Öz:
Tuz stresi meyve verim ve kalitesini etkileyen önemli bir tarım sorunudur. Tuzluluğa karşı anaçların tepkisi strese karşı toleransı sergilediğinden dolayı büyük bir önem arz etmektedir. Elma bitkisinin kısa dönemli tuzluluğa etkileri hakkında fazla bir bilgi bulunmamaktadır. Çalışmamızda, M9 ve MM106 anaçlarına aşılı Fuji elma çeşidinin 35 mM NaCl stresine verdiği fizyolojik tepkiler araştırılmıştır. Bir ay sonra, tuz uygulanan bitkilerde düşük klorofil içeriği (SPAD) görülmüştür. Tuz stresi stoma iletkenliğini Fuji/M9 ve Fuji/MM106’ da kontrol bitkilerine kıyasla sırasıyla % 17.0 ve 30.1 oranında azaltmıştır. Membran geçirgenliği tuz uygulanan Fuji/M9 ve Fuji/MM106’ da kontrol bitkilerine kıyasla sırasıyla % 21.3 ve 22.0 oranında azalmıştır. Tuz stresinden dolayı SPAD değerinde, stoma iletkenliğinde ve yaprak oransal su içeriğinde azalma ve yaprak sıcaklığı ve membran geçirgenliğindeki artış Fuji/M9’ a kıyasla Fuji/MM106’ da daha yüksek görülmüş olup, kısa dönemli tuzluluğun toksik etkileri Fuji/M9’da daha az görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akçay, D., & Eşitken, A. (2017). MM106 Anacı ve üzerine aşılı golden delicious elma çeşidine tuz stresinin etkileri. Selçuk Tarım Bilimleri Dergisi, 3(2), 228-232.
  • Aras, S., Arslan, E., & Esitken, A. (2015, September, October). Biochemical and physiological responses of lemon plant under salt stress. Paper presented at 2nd International Conference on Sustainable Agriculture and Environment, Konya.
  • Aras, S., & Eşitken, A. (2018). Physiological Responses Of Cherry Rootstocks To Short Term Salinity. Erwerbs-Obstbau, 60, 161-164.
  • Bressan, R. A., Nelson, D. E., Iraki, N. M., La Rosa, P. C., Singh, N. K., Hasegawa, P. M., & Carpita, N. C. (1990). Reduced Cell Expansion and Changes In Cell Walls Of Plant Cells Adapted To Nacl. In: Katterman, F. (Ed.), Environmental Injury to Plants (pp: 137–171). San Diego: Academic Press.
  • Civelek, C., & Yıldırım, E. (2019). Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 153-158.
  • Dalil, B., & Ghassemi-Golezani, K. (2012). Changes in leaf temperature and grain yield of maize under different levels of irrigation. Research on Crops, 13 (2), 481-485.
  • El-Desouky, S. A., & Atawia, A. A. R. (1998). Growth performance of some citrus rootstocks under saline conditions. Alexandria Journal of Agricultural Research, 43, 231–254.
  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.
  • Fu, M., Li, C., & Ma, F. (2013). Physiological responses and tolerance to nacl stress in different biotypes of malus prunifolia. Euphytica, 189, 101-109.
  • Garriga, M., Muñoz, C. A., Caligari, P. D., & Retamales, J. B. (2015). Effect of salt stress on genotypes of commercial (Fragaria X Ananassa) and chilean strawberry (F. chiloensis). Scientia Horticulturae, 195, 37-47.
  • Kıpçak, S., Ekincialp, A., Erdinç, Ç., Kabay, T., & Şensoy, S. (2019). Tuz Stresinin Farklı Fasulye Genotiplerinde Bazı Besin Elementi İçeriği ile Toplam Antioksidan ve Toplam Fenol İçeriğine Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1), 136-144.
  • Koc, A., Balci, G., Erturk, Y., Dinler, B. S., Keles, H., & Bakoğlu, N. (2016a). Farklı tuz konsantrasyonlarının ve uygulamaların çilek gelişimi üzerine etkileri. Journal of Ataturk Central Horticultural Research Institute, 45, 468-473.
  • Koc, A., Balci, G., Erturk, Y., Keles, H., Bakoglu, N., & Ercisli, S., (2016b). Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline, membrane permeability and growth of strawberry (Fragaria X Ananassa) under salt stress. Journal of Applied Botany and Food Quality, 89, 89-97.
  • Koyro, H. W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56, 136–146.
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). Nacl-Induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398.
  • Maas, E. V. (1986). Salt tolerance in plants. Applications in Plant Sciences, 1, 12–26.
  • Massai, R., Remorini, D., & Tattini, M. (2004). Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of prunus under various salinity concentrations. Plant and Soil, 259 (1-2), 153-162.
  • Murkute, A., Sharma, S., & Singh, S. (2006). Studies on salt stress tolerance of citrus rootstock genotypes with Arbuscular Mycorrhizal fungi. HortScience, 33, 70-76.
  • Najafian, S. H., Rahemi, M., & Tavallali, V. (2008). Effect of salinity on tolerance of two bitter almond rootstock. American-Eurasian Journal of Agricultural and Environmental Sciences, 3, 264-268.
  • Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22, 4056–4075.
  • Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Journal of Plant Physiology, 53, 258-260.
  • Tavallali, V., Rahemi, M., & Panahi, B. (2008). Calcium induces salinity tolerance in pistachio rootstocks. Fruits, 63, 285-296.
  • Turhan, A., & Kuşçu, H. (2019). Tuzluluk Stresinin Patlıcanda (Solanum melongena L.) Su Kullanım Etkinliği, Verim Bileşenleri, Yaprak Klorofil ve Karotenoid İçeriği Üzerine Etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(1), 61-68.
  • Yin, R., Bai, T., Ma, F., Wang, X., Li, Y., & Yue, Z. (2010). Physiological responses and relative tolerance by chinese apple rootstocks to nacl stress. Scientia Horticulturae, 126, 247-252.
  • Zhu, Z., Chen, J., & Zheng, H. L. (2012). Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) lam. Tree Physiology, 32(11), 1378- 1388.
  • Zrig, A., Tounekti, T., Vadel, A. M., BenMohamed, H., Valero, D., Serrano, M., Chtara, C., & Khemira, H. (2011). Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiology and Biochemistry, 49, 1313–1320.
APA ARAS S, EŞİTKEN A (2019). Responses of Apple Plants to Salinity Stress. , 253 - 257. 10.29133/yyutbd.494677
Chicago ARAS Servet,EŞİTKEN Ahmet Responses of Apple Plants to Salinity Stress. (2019): 253 - 257. 10.29133/yyutbd.494677
MLA ARAS Servet,EŞİTKEN Ahmet Responses of Apple Plants to Salinity Stress. , 2019, ss.253 - 257. 10.29133/yyutbd.494677
AMA ARAS S,EŞİTKEN A Responses of Apple Plants to Salinity Stress. . 2019; 253 - 257. 10.29133/yyutbd.494677
Vancouver ARAS S,EŞİTKEN A Responses of Apple Plants to Salinity Stress. . 2019; 253 - 257. 10.29133/yyutbd.494677
IEEE ARAS S,EŞİTKEN A "Responses of Apple Plants to Salinity Stress." , ss.253 - 257, 2019. 10.29133/yyutbd.494677
ISNAD ARAS, Servet - EŞİTKEN, Ahmet. "Responses of Apple Plants to Salinity Stress". (2019), 253-257. https://doi.org/10.29133/yyutbd.494677
APA ARAS S, EŞİTKEN A (2019). Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(2), 253 - 257. 10.29133/yyutbd.494677
Chicago ARAS Servet,EŞİTKEN Ahmet Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29, no.2 (2019): 253 - 257. 10.29133/yyutbd.494677
MLA ARAS Servet,EŞİTKEN Ahmet Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, vol.29, no.2, 2019, ss.253 - 257. 10.29133/yyutbd.494677
AMA ARAS S,EŞİTKEN A Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2019; 29(2): 253 - 257. 10.29133/yyutbd.494677
Vancouver ARAS S,EŞİTKEN A Responses of Apple Plants to Salinity Stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2019; 29(2): 253 - 257. 10.29133/yyutbd.494677
IEEE ARAS S,EŞİTKEN A "Responses of Apple Plants to Salinity Stress." Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29, ss.253 - 257, 2019. 10.29133/yyutbd.494677
ISNAD ARAS, Servet - EŞİTKEN, Ahmet. "Responses of Apple Plants to Salinity Stress". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29/2 (2019), 253-257. https://doi.org/10.29133/yyutbd.494677