Yıl: 2021 Cilt: 58 Sayı: 1 Sayfa Aralığı: 68 - 72 Metin Dili: İngilizce DOI: 10.29399/npa.27193 İndeks Tarihi: 12-05-2021

Central Role of T Follicular Helper Cells in Myasthenia Gravis

Öz:
Myasthenia gravis (gMG) is a critical autoimmune disease, which has a serious impact on the life and survival of patients. Ocular Myasthenia Gravis (oMG) is often the initial manifestation of MG and has the potential to progress to gMG. However, to date no distinct mechanism has been found to clarify the pathogenesis of conversion from oMG to gMG. Recent studies have shown that the development and clinical progression of MG is closely associated with the abnormal function of follicular helper T (Tfh) cells. Thus, this article reviews the recently achieved research progress on the involvement of Tfh cells in MG immunopathogenesis and focuses on the role of Tfh cells and related-factors (IL-21, CXCL13, CXCR5, bcl-6 etc.) in germinal center formation and antibody production in MG immune response.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Nagia L, Lemos J, Abusamra K, Cornblath WT, Eggenberger ER. Prognosis of Ocular Myasthenia Gravis: Retrospective Multicenter Analysis. Ophthalmology 2015;122:1517–1521. [Crossref]
  • 2. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010;143:592–605. [Crossref]
  • 3. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 1976;26:1054–1059. [Crossref]
  • 4. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 2000;192:1553–1562. [Crossref]
  • 5. Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, Qiu L, Ouyang J. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol 2013;256:55–61. [Crossref]
  • 6. Yang Y, Zhang M, Ye Y, Ma S, Fan L, Li Z. High frequencies of circulating Tfh- Th17 cells in myasthenia gravis patients. Neurol Sci 2017;38:1599–1608. [Crossref]
  • 7. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000;192:1545–1552. [Crossref]
  • 8. Rao DA. T Cells That Help B Cells in Chronically Inflamed Tissues. Front Immunol 2018;9:1924. [Crossref]
  • 9. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014;41:529–542. [Crossref]
  • 10. Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM, Lanzavecchia A, Sallusto F. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 2013;38:596–605. [Crossref]
  • 11. Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol 2015;15:185–189. [Crossref]
  • 12. Mesquita Jr D, Cruvinel WM, Resende LS, Mesquita FV, Silva NP, Camara NO, Andrade LE. Follicular helper T cell in immunity and autoimmunity. Braz J Med Biol Res 2016;49. [Crossref]
  • 13. Abbott RK, Lee JH, Menis S, Skog P, Rossi M, Ota T, Kulp DW, Bhullar D, Kalyuzhniy O, Havenar-Daughton C, Schief WR, Nemazee D, Crotty S. Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens. Immunity 2018;48:133–146.e6. [Crossref]
  • 14. Schwickert TA, Victora GD, Fooksman DR, Kamphorst, AO, Mugnier MR, Gitlin AD, Dustin ML, Nussenzweig MC. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J Exp Med 2011;208:1243–1252. [Crossref]
  • 15. Akkaya M, Traba J, Roesler AS, Miozzo P, Akkaya B, Theall BP, Sohn H, Pena M, Smelkinson M, Kabat J, Dahlstrom E, Dorward DW, Skinner J, Sack MN, Pierce SK. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat Immunol 2018;19:871–884. [Crossref]
  • 16. Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, Kondo T, Itoyama Y. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol 2005;170:172–178. [Crossref]
  • 17. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. Annu Rev Immunol 2016;34:335–368. [Crossref]
  • 18. Shiao Y, Lee C, Hsu Y, Huang SF, Lin CY, Li LH, Fann CS, Tsai CY, Tsai SF, Chiu HC. Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. J Neuroimmunol 2010;221:101–106. [Crossref]
  • 19. Alahgholi-Hajibehzad M, Durmuş H, Aysal F, Gulsen-Parman Y, Oflazer P, Deymeer F, Saruhan-Direskeneli G. The effect of interleukin (IL)-21 and CD4+ CD25++ T cells on cytokine production of CD4+ responder T cells in patients with myasthenia gravis: IL-21 and Treg effects on cytokines. Clin Exp Immunol 2017;190:201–207. [Crossref]
  • 20. Hocaoglu M, Durmus H, Ozkan B, Yentur SP, Dogan O, Parman Y, Deymeer F, Saruhan-Direskeneli G. Increased costimulatory molecule expression of thymic and peripheral B cells and a sensitivity to IL-21 in myasthenia gravis. J Neuroimmunol 2018;323:36–42. [Crossref]
  • 21. Li Y, Rauniyar VK, Yin WF, Hu B, Ouyang S, Xiao B, Yang H. Serum IL-21 levels decrease with glucocorticoid treatment in myasthenia gravis. Neurol Sci 2014;35:29–34. [Crossref]
  • 22. Xin N, Fu L, Shao Z, Guo M, Zhang X, Zhang Y, Dou C, Zheng S, Shen X, Yao Y, Wang J, Wang J, Cui G, Liu Y, Geng D, Xiao C, Zhang Z, Dong R. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice. Mol Cell Neurosci 2014;58:85–94. [Crossref]
  • 23. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, Molina H, Pernis AB. The mTORC1–4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun 2017;8(1):254. [Crossref]
  • 24. Zhang CJ, Gong Y, Zhu W, Qi Y, Yang CS, Fu Y, Chang G, Li Y, Shi S, Wood K, Ladha S, Shi FD, Liu Q, Yan Y. Augmentation of Circulating Follicular Helper T Cells and Their Impact on Autoreactive B Cells in Myasthenia Gravis. J Immunol 2016;197:2610–2617. [Crossref]
  • 25. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, Wang YH, Watowich SS, Jetten AM, Tian Q, Dong C. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 2008;29:138–149. [Crossref]
  • 26. Zhu Y, Zou L, Liu Y. T follicular helper cells, T follicular regulatory cells and autoimmunity. Int Immunol 2016;28:173–179. [Crossref]
  • 27. Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F, Tallaksen C, Berrih-Aknin S. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 2006;108:432–440. [Crossref]
  • 28. Zhang M, Guo J, Li H, Zhou Y, Tian F, Gong L, Wang X, Li Z, Zhang W. Expression of immune molecules CD25 and CXCL13 correlated with clinical severity of myasthenia gravis. J Mol Neurosci 2013;50:317-323. [Crossref]
  • 29. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - TFH cells in human health and disease. Nat Rev Immunol 2013;13:412–426. [Crossref]
  • 30. Polo JM, Dell’Oso T, Ranuncolo SM, Cerchietti L Beck D, Da Silva GF, Prive GG, Licht JD, Melnick A. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 2004;10:1329–1335. [Crossref]
  • 31. Finotto S. B lymphocyte-induced maturation protein 1(Blimp-1), a negative regulator of TH9 development, orchestrates the resolution of airway inflammation in patients with allergic asthma. J Allergy Clin Immunol 2019;143:937–939. [Crossref]
  • 32. Reljic R, Wagner SD, Peakman LJ, Fearon DT. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J Exp Med 2000;192:1841–1848. [Crossref]
  • 33. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000;13:199–212. [Crossref]
  • 34. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000;408:57–63. [Crossref]
  • 35. Zotos D, Coquet JM, Zhang Y, Light A, D’Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM. IL-21 regulates germinal center B cell differentiation and proliferation through a B cellintrinsic mechanism. J Exp Med 2010;207:365–378. [Crossref]
  • 36. Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol 2006;177:5236–5247. [Crossref]
  • 37. Ettinger R, Sims GP, Fairhurst AM, Robbins R, Da Silva YS, Spolski R, Leonard WJ, Lipsky PE. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 2005;175:7867–7879. [Crossref]
  • 38. Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, Verma NK, Smyth MJ, Rigby RJ, Vinuesa CG. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 2010;207:353– 363. [Crossref]
  • 39. Vaccari M, Franchini G. T Cell Subsets in the Germinal Center: Lessons from the Macaque Model. Front Immunol 2018;9:348. [Crossref]
  • 40. Boumendjel A, Tawk L, Malefijt RW, Boulay V, Yssel H, Pene J. IL-27 induces the production of IgG1 by human B cells. Eur Cytokine Netw 2006;17:281– 289. [Crossref]
  • 41. Pene J, Gauchat JF, Lecart S, Drouet E, Guglielmi P, Boulay V, Delwail A, Foster D, Lecron JC, Yssel H. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol 2004;172:5154–5157. [Crossref]
  • 42. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, Hwu P, Shaffer DJ, Akilesh S, Roopenian DC, Morse HC Rd, Lipsky PE, Leonard WJ. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 2004;173:5361–5371. [Crossref]
  • 43. Hu B, Tian X, Huang H, Jian A, Ouyang S, Yin W, Duan W, Yang H. Expression of IL-21 in the peripheral blood of myasthenia gravis patients and its correlation with anti-AChR-Ab class switch. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2010;35:958–963. [Crossref]
  • 44. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, Durandy A, Baumann U, Schlesier M, Welcher AA, Peter HH, Warnatz K. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol 2006;177:4927–4932. [Crossref]
  • 45. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, Roberts IS, Copley, RR, Bell JI, Cornall RJ, Goodnow CC. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005;435:452– 458. [Crossref]
  • 46. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol 2010;11:535– 542. [Crossref]
  • 47. Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: A growing relationship. Cell Immunol 2016;310:27–41. [Crossref]
  • 48. Zimmer L, Goldinger SM, Hofmann L, Loquai C, Ugurel S, Thomas I, Schmidgen MI, Gutzmer R, Utikal JS, Goppner D, Hassel JC, Meier F, Tietze JK, Forschner A, Weishaupt C, Leverkus M, Wahl R, Dietrich U, Garbe C, Kirchberger MC, Eigentler T, Berking C, Gesierich A, Krackhardt AM, Schadendorf D, Schuler G, Dummer R, Heinzerling LM. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60:210–225. [Crossref]
  • 49. Yilmaz V, Oflazer P, Aysal F, Durmus H, Poulas K, Yentur SP, Gulsen-Parman Y, Tzartos S, Marx A, Tuzun E, Deymeer F, Saruhan-Direskeneli G. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK. PloS One 2015;10:e123546. [Crossref]
  • 50. Li Y, Guptill JT, Russo MA, Massey JM, Juel VC, Hobson–Webb LD, Howard JF, Chopra M, Liu W, Yi JS. Tacrolimus inhibits Th1 and Th17 responses in MuSK– antibody positive myasthenia gravis patients. Exp Neurol 2019;312:43–50. [Crossref]
APA Wu N, Tuzun E, Cheng Y, li y, 吴 雅, rao J, HUANG H, li S, Shi L, wu x (2021). Central Role of T Follicular Helper Cells in Myasthenia Gravis. , 68 - 72. 10.29399/npa.27193
Chicago Wu Na,Tuzun Erdem,Cheng Yi,li yan,吴 雅俊,rao Jie,HUANG Hui,li Siyu,Shi Ling,wu xiaorong Central Role of T Follicular Helper Cells in Myasthenia Gravis. (2021): 68 - 72. 10.29399/npa.27193
MLA Wu Na,Tuzun Erdem,Cheng Yi,li yan,吴 雅俊,rao Jie,HUANG Hui,li Siyu,Shi Ling,wu xiaorong Central Role of T Follicular Helper Cells in Myasthenia Gravis. , 2021, ss.68 - 72. 10.29399/npa.27193
AMA Wu N,Tuzun E,Cheng Y,li y,吴 雅,rao J,HUANG H,li S,Shi L,wu x Central Role of T Follicular Helper Cells in Myasthenia Gravis. . 2021; 68 - 72. 10.29399/npa.27193
Vancouver Wu N,Tuzun E,Cheng Y,li y,吴 雅,rao J,HUANG H,li S,Shi L,wu x Central Role of T Follicular Helper Cells in Myasthenia Gravis. . 2021; 68 - 72. 10.29399/npa.27193
IEEE Wu N,Tuzun E,Cheng Y,li y,吴 雅,rao J,HUANG H,li S,Shi L,wu x "Central Role of T Follicular Helper Cells in Myasthenia Gravis." , ss.68 - 72, 2021. 10.29399/npa.27193
ISNAD Wu, Na vd. "Central Role of T Follicular Helper Cells in Myasthenia Gravis". (2021), 68-72. https://doi.org/10.29399/npa.27193
APA Wu N, Tuzun E, Cheng Y, li y, 吴 雅, rao J, HUANG H, li S, Shi L, wu x (2021). Central Role of T Follicular Helper Cells in Myasthenia Gravis. Nöropsikiyatri Arşivi, 58(1), 68 - 72. 10.29399/npa.27193
Chicago Wu Na,Tuzun Erdem,Cheng Yi,li yan,吴 雅俊,rao Jie,HUANG Hui,li Siyu,Shi Ling,wu xiaorong Central Role of T Follicular Helper Cells in Myasthenia Gravis. Nöropsikiyatri Arşivi 58, no.1 (2021): 68 - 72. 10.29399/npa.27193
MLA Wu Na,Tuzun Erdem,Cheng Yi,li yan,吴 雅俊,rao Jie,HUANG Hui,li Siyu,Shi Ling,wu xiaorong Central Role of T Follicular Helper Cells in Myasthenia Gravis. Nöropsikiyatri Arşivi, vol.58, no.1, 2021, ss.68 - 72. 10.29399/npa.27193
AMA Wu N,Tuzun E,Cheng Y,li y,吴 雅,rao J,HUANG H,li S,Shi L,wu x Central Role of T Follicular Helper Cells in Myasthenia Gravis. Nöropsikiyatri Arşivi. 2021; 58(1): 68 - 72. 10.29399/npa.27193
Vancouver Wu N,Tuzun E,Cheng Y,li y,吴 雅,rao J,HUANG H,li S,Shi L,wu x Central Role of T Follicular Helper Cells in Myasthenia Gravis. Nöropsikiyatri Arşivi. 2021; 58(1): 68 - 72. 10.29399/npa.27193
IEEE Wu N,Tuzun E,Cheng Y,li y,吴 雅,rao J,HUANG H,li S,Shi L,wu x "Central Role of T Follicular Helper Cells in Myasthenia Gravis." Nöropsikiyatri Arşivi, 58, ss.68 - 72, 2021. 10.29399/npa.27193
ISNAD Wu, Na vd. "Central Role of T Follicular Helper Cells in Myasthenia Gravis". Nöropsikiyatri Arşivi 58/1 (2021), 68-72. https://doi.org/10.29399/npa.27193