Yıl: 2021 Cilt: 26 Sayı: 2 Sayfa Aralığı: 308 - 315 Metin Dili: İngilizce DOI: 10.5505/ejm.2021.72681 İndeks Tarihi: 15-05-2021

Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling

Öz:
In this study it is aimed to analyze the similarities of 50 countries where coronavirus pandemic, which has been profoundly affecting the whole world socially, psychologically and economically, was mostly seen. The similarities of the countries were investigated with Hierarchical Cluster Analysis and Multi-dimensional Scaling Analysis, which are among multivariate statistical analysis techniques in terms of coronavirus pandemic indicators. The variables used in the analysis are death rate, recovery rate, active rate, serious case rate, case rate per 1 million, death rate per 1 million, and test rate per 1 million. As a result of Hierarchical Cluster Analysis, the countries were divided into seven clusters. In the two-dimensional projections of Multidimensional Scaling, Kruskal stress statistics was found as 0,00001. According to this, a complete compatibility was found between data distances and configuration distances. Also, the fact that R2 is 1,00000 shows that the model is quite powerful. As a result of the study, the results of both methods were found to be very close to each other. In the same subgroup, Turkey; Peru, Poland, Panama, Romania, Netherlands and Kazakhstan take place. In the study; both developed and underdeveloped countries were found to be in the same cluster. This is a surprising situation. While developed countries are expected to be more effective in combating the epidemic, it was observed that they showed similarities with underdeveloped countries.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. WHO (World Health Organization) , www.who.int (accessed: November 3, 2020)
  • 2. https://www.worldometers.info/coronavirus/(accessed: November 3, 2020)
  • 3. https://www.worldometers.info/coronavirus/#countries(accessed: November 3, 2020)
  • 4. Hair, J. F., Jr., Anderson, R. E., Tatham, R. L. and Black, W. C., 1998. Multivariate Data Analysis. Upper Saddle River, New Jersey: Prentice-Hall.
  • 5. Özdamar, K. Paket Programlarla İstatistiksel Veri Analizi 2, Yenilenmiş 5. Baskı. 2004. Eskişehir: Kaan Kitabevi.
  • 6. Ferreira L. Hitchcock D.B. “A comparison of hierarchical methods for Cluster Functional data”, Communications in Statistics-Simulation and Computation 2009; 38: 1925-1949.
  • 7. Akdamar E. Investigation of the OECD countries by using some labour market indicators with Cluster Analysis and Multidimensional Scaling Analysis. Journal of Academic Researches and Studies 2019; 11: 50-65.
  • 8. Tatlıdil, H. . Uygulamalı çok değişkenli istatistiksel analiz, 1996 I. Baskı. Ankara: Engin Yayınları.
  • 9. Kaygısız Z. Saraçlı S. Dokuzlar K.U. Examining the factors of development level of the administrative provinces wıth Path analysis and Cluster analysis. VII. Ulusal Ekonometri ve İstatistik Sempozyumu 2005; 26-27.
  • 10. Doğan, N. and Başokçu, T.O. İstatistik Tutum Ölçeği İçin Uygulanan Faktör Analizi ve Aşamalı Kümeleme Analizi Sonuçlarının Karşılaştırılması. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 2010; 1: 65-71.
  • 11. Kılıç, İ., Saraçlı, S. and Kolukısaoğlu, S. Sosyoekonomik göstergeler bakmndan illerin bölgesel bazda benzerliklerinin çok değişkenli analizler ile incelenmesi. İstatistikçiler Dergisi, 2011; 4: 57-68.
  • 12. Johnson RA, Wichern DW. Multidimensional Scaling. Applied Multivariate Statistical Analysis., 1999. 4th ed. New Jersey: Pearson Prentice Hall.
  • 13. Yenilmez, F. And Girginer, N. Comparison of indicators of women’s labour between Turkey and EU member states by employing multidimensional scaling analysis and clustering analysis. Applied Economics 2016; 13: 1229-1239.
  • 14. Alpar, R .Uygulamalı Çok Değişkenli İstatistiksel Yöntemler. 2013. Detay Yayıncılık, Ankara.
  • 15. Blashfield, R. K. and Aldenferder, M. S. The Literature on Cluster analysis, Multivariate Behavioral Research 1978; 13: 271-295.
  • 16. Songur, C. Cluster Analysis of Organization for Economic Cooperation and Development Countries According to Health Indicators. Journal of Social Security 2016; 6: 197-224.
  • 17. Ketchen, D.Jr. and Shook, C.L. The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique, Strategic Management Journal 1996; 17: 441-458.
  • 18. Koltan Yılmaz, Ş. and Patir, S. Cluster analysis and its usage in marketing. Journal of Academıc Approaches 2011; 1: 91-113.
  • 19. Şahin, D. The Position of Turkey within the European Union Countries in terms of Health Indicators: A Statistical Analysis. Journal of Institute of Social Sciences 2017; 2: 55-77.
  • 20. Romesburg, C. Cluster analysis for researchers. 2004. Lulu. com.
  • 21. Ekiyor, A. Algılama haritalarının hazırlanmasında Çok Boyutlu Ölçeklemetekniğinin kullanılması: Ankara İli Özel HastanelerÖrneği. Gazi Üniversitesi Sosyal Bilimler Enstitüsü, doktoratezi, 2009. Ankara
  • 22. Tüzüntürk S. Multidimensional scaling: an application on crime statistics”, Uludağ University Journal of Economics and Administrative Sciences 2009; 28: 71-91.
  • 23. Gündüz S. Uzaklık fonksiyonlarının Çok Boyutlu Ölçeklemealgoritmalarındaki etkinliğinin incelenmesi ve uygulamalar. Çukurova Üniversitesi Yüksek lisans tezi 2011. Adana.
  • 24. Acar, A.B. Comparison of Turkey and the Other OECD Countries in Terms of Labour Markets’ Main Indicators Using Multi Dimensional Scale Analysis. Faculty of Business Administration Institute of Business Administration Journal of Management 2013; 24: 121-144.
  • 25. Büyüker İşler, D. Examining between regional internal migration movements in Turkey with multidimensional scaling. Adıyaman Üniversites iSosyal Bilimler Enstitüsü Dergisi 2014; 7: 447-484.
  • 26. Bezek Güre, Ö. and Kayri, M. Investigatıon of OECD countries with Multi-dimensional Scaling analysis in terms of traffic accident indicators. International Journal of Health Services Research and Policy 2020; 5: 1: 24-40.
  • 27. Hand D, Manila H, Symth P. (Principles of Data Mining, 2001. London: The MIT Press.
  • 28. Kalaycı Ş. SPSS uygulamalı çok değişkenli istatistik teknikleri. 2006. 2.baskı. Ankara: Asil Yayın Dağıtım Ltd. Şti.
  • 29. Saatçioğlu C, Bildirici Ü. The Place of Turkey Between OECD Countrıes in Terms of Innovation Indicators: An Econometric Implementation. İşletme ve İktisat Çalışmaları Dergisi 2017; 4: 44-56.
  • 30. Aliukov, S.V., Du, X. Li,S and Sang, Y. Investigation of China's wind power based on cluster analysis and multidimensional scaling methods.IOP Conf. Series: Earth and Environmental Science 2019; 378: 012043. 1-6.
  • 31. Wen CH. and Yeh, WY. Positioning of International Air Passenger Carriers Using Multidimensional Scaling and Correspondence Analysis. Transportation Journal 2020; 49: 1: 7-23.
  • 32. Wasserman, S., K. Faust, D. Iacobucci, and M. Granovetter. Social Network Analysis: Methods and Applications. 1994. Cambridge: Cambridge University Press.
  • 33. Ersöz F. [Analysis of health levels and expenditures of Turkey and OECD countries]. İstatistikçiler Dergisi 2008; 1: 95-104.
  • 34. Wilkermaier, F. An introduction to MDS, Sound Quality Research Unit 2003.
  • 35. Kruskal, J.B. Multidimensional Scaling by optimizing goodness of fit to a Nonmetric Hypothesis. Psychometrika 1964; 9: 1-27.
APA bezek güre ö, KAYRI M, şevgin h (2021). Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. , 308 - 315. 10.5505/ejm.2021.72681
Chicago bezek güre özlem,KAYRI MURAT,şevgin hikmet Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. (2021): 308 - 315. 10.5505/ejm.2021.72681
MLA bezek güre özlem,KAYRI MURAT,şevgin hikmet Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. , 2021, ss.308 - 315. 10.5505/ejm.2021.72681
AMA bezek güre ö,KAYRI M,şevgin h Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. . 2021; 308 - 315. 10.5505/ejm.2021.72681
Vancouver bezek güre ö,KAYRI M,şevgin h Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. . 2021; 308 - 315. 10.5505/ejm.2021.72681
IEEE bezek güre ö,KAYRI M,şevgin h "Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling." , ss.308 - 315, 2021. 10.5505/ejm.2021.72681
ISNAD bezek güre, özlem vd. "Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling". (2021), 308-315. https://doi.org/10.5505/ejm.2021.72681
APA bezek güre ö, KAYRI M, şevgin h (2021). Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. Eastern Journal of Medicine, 26(2), 308 - 315. 10.5505/ejm.2021.72681
Chicago bezek güre özlem,KAYRI MURAT,şevgin hikmet Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. Eastern Journal of Medicine 26, no.2 (2021): 308 - 315. 10.5505/ejm.2021.72681
MLA bezek güre özlem,KAYRI MURAT,şevgin hikmet Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. Eastern Journal of Medicine, vol.26, no.2, 2021, ss.308 - 315. 10.5505/ejm.2021.72681
AMA bezek güre ö,KAYRI M,şevgin h Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. Eastern Journal of Medicine. 2021; 26(2): 308 - 315. 10.5505/ejm.2021.72681
Vancouver bezek güre ö,KAYRI M,şevgin h Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling. Eastern Journal of Medicine. 2021; 26(2): 308 - 315. 10.5505/ejm.2021.72681
IEEE bezek güre ö,KAYRI M,şevgin h "Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling." Eastern Journal of Medicine, 26, ss.308 - 315, 2021. 10.5505/ejm.2021.72681
ISNAD bezek güre, özlem vd. "Investigation of Coronavirus Pandemic Indicators of the Countries with Hierarchical Clustering and Multidimensional Scaling". Eastern Journal of Medicine 26/2 (2021), 308-315. https://doi.org/10.5505/ejm.2021.72681