Yıl: 2021 Cilt: 15 Sayı: 4 Sayfa Aralığı: 281 - 292 Metin Dili: İngilizce DOI: 10.25135/rnp.215.20.09.1812 İndeks Tarihi: 16-05-2021

Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites

Öz:
Biotransformation of bis-bibenzyl perrottetin F (1), isolated from the liverwort Lunularia cruciata byAspergillus niger, has been investigated. New metabolites (2-4) have been isolated using reversed phasesemipreparative HPLC and their structures were established to be 8-hydroxyperrottetin F, C-7-C-8 cleavedproduct, and perrottetin F 6’-sulfate using 1D and 2D NMR, HR-ESI-MS, IR and UV spectroscopy. Theantimicrobial and cytotoxic properties of these compounds were also evaluated. Given the suggested cytotoxicproperties of the parent compound, antiproliferative activity against healthy human lung fibroblasts (MRC5) andhuman lung carcinoma (A549) of three metabolites were evaluated revealing their lower cytotoxic properties incomparison to the starting compound - perrottetin F. The antimicrobial properties of these compounds were alsoevaluated, with the inhibitory activity against the Pseudomonas aeruginosa PAO1 and Staphylococcus aureusdetermined between 100 µM and 450 µM. The metabolites showed remarkable ability to inhibit synthesis ofbacterial quorum-sensing signal molecules such as short chain acyl homoserine lactones (AHLs). Therefore,biotransformation method represents fast and effective tool for obtaining new bioactive structures.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Y. Asakawa (1982). Chemical constituents of the Hepaticae. Springer: Progress in the Chemistry of Organic Natural Products, Vienna.
  • [2] Y. Asakawa, M. Toyota, R. Matsuda, K. Takikawa and T. Takemoto (1983). Distribution of novel cyclic bisbibenzyls in Marchantia and Riccardia species, Phytochemistry 22, 1413-1415.
  • [3] Y. Asakawa (1993). Biologically active terpenoids and aromatic compounds from liverworts and the inedible mushroom Cryptoporus volvatus. In: Bioactive Natural Products: Detection, isolation, and structural determination. eds: Colegate SM, Molyneux RJ, CRC Press, Boca Raton, Florida, pp. 319-347.
  • [4] Y. Askawa (2013). Ludwiczuk A, Nagashima F. In Progress in the Chemistry of Organic Natural Products; eds: Kinghorn, D. A., Falk. H., Kobayashi. J. Springer: Vienna, 95, 1-796
  • [5] Y. Asakawa (2016). Polyphenols in bryophytes: structures, biological activities, and bio- and total syntheses. In Recent Advances in Polyphenol Research, eds: Yoshida K, Cheynier V, Quideau S, WileyBlackwell, UK, pp. 36-66.
  • [6] M. Toyota, M. Tori, K. Takikawa, Y. Shiobara, M. Kodama and Y. Asakawa (1985). Perrottetins E, F, and G from (liverwort)-isolation, structure determination, and synthesis of perrottetin E, Tetrahedron Lett. 26, 6097-6100.
  • [7] M. Novakovic, D. Bukvicki, B. Andjelkovic, T. Ilic-Tomic, M. Veljic, V. Tesevic and Y. Asakawa (2019). Cytotoxic activity of riccardin and perrottetin derivatives from the liverwort Lunularia cruciata, J. Nat. Prod. 82, 694-701.
  • [8] Y. Asakawa, A. Ludwiczuk, F. Nagashima, M. Toyota, T. Hashimoto, M. Tori, Y. Fukuyama and L. Harinantenaina (2009). Bryophytes: Bio- and chemical diversity, bioactivity and chemosystematics, Heterocycles 77, 99-150.
  • [9] N. Ghani, H. N. Ismail, Y. Noma and Y. Asakawa (2017). Microbial transformation of some natural and synthetic aromatic compounds by fungi: Aspergillus and Neurospora strains. Nat. Prod. Commun. 12, 1237-1240.
  • [10] Y. Iwai, K. Murakami, Y. Gomi, T. Hashimoto, Y. Asakawa, Y. Okuno, T. Ishikawa, D. Hatakeyama, N. Echigo and T. Kuzuhara (2011). Anti-Influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts, PLoS One. 6(5):e19825
  • [11] C. F. Xie, H. Q. Yuan, J. B. Qu, J. Xing, B. B. Lü, X. N. Wang, M. Ji and H. X. Lou. (2009). Biocatalytic production of acyclic bis[bibenzyls] from dihydroresveratrol by crude Momordica charantia peroxidase, Chem. Biodivers. 6, 1193-1201.
  • [12] W. He, J. Wang, L. Zhang and Z. Liu (2012). Biotransformation of ginsenosides and their aglycones, Int. J. Biomed. Pharm. Sci. 6(1), 45-55.
  • [13] R. Azerad (1999). Microbial models for drug metabolism. In: Biotransformations, Advances in Biochemical Engineering/Biotechnology, ed: Faber K. Springer, Berlin, Heidelberg, pp.169-218.
  • [14] B. Mutafova and S. Mutafov (2016). Microbial transformations of plant origin compounds as a step in preparation of highly valuable pharmaceuticals, J. Drug Metab. Toxicol. 7, 1-11.
  • [15] G. Chen, M. Yang, S. Nong, X. Yang, Y. Ling, D. Wang, X. Wang and W. Zhang (2013). Microbial transformation of 20(S)-protopanaxadiol by Absidia corymbifera. Cytotoxic activity of the metabolites against human prostate cancer cells, Fitoterapia 84, 6-10.
  • [16] Y. Asakawa and A. Ludwiczuk (2018). Chemical constituents of bryophytes: Structures and biological activity, J. Nat. Prod, 81, 641–660.
  • [17] M. B. Hansen, S. E. Nielsen and K. Berg (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 119, 203-210.
  • [18] K. H McClean, M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. A. B. Stewart and P. Williams (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones, Microbiology 14, 3703-3711.
  • [19] J. H. Merritt, D. E. Kadouri and G. A. O’Toole (2005). Growing and analyzing static biofilms. In: Current Protocols in Microbiology. John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • [20] T. Ilic-Tomic, M. Sokovic, S. Vojnovic, A. Ciric, M. Veljic, J. Nikodinovic-Runic and M. Novakovic (2016). Diarylheptanoids from Alnus viridis ssp. viridis and Alnus glutinosa: Modulation of quorum sensing activity in Pseudomonas aeruginosa, Planta Med. 83, 117-125.
  • [21] K. Duan and G. Surette (2007). Environmental Regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems, J. Bacteriol. 189, 4827-4836.
  • [22] F. Massai, F. Imperi, S. Quattrucci, E. Zennaro, P. Visca and L. Leoni (2011). A multitask biosensor for micro-volumetric detection of N-3-oxo-dodecanoyl-homoserine lactone quorum sensing signal, Biosens Bioelectron. 26, 3444-3449.
  • [23] M. P. Fletcher, S.P. Diggle, S. A. Crusz, S.R. Chhabra, M. Cámara and P. Williams (2007). A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules, Environ. Microbiol. 9, 2683-2693.
  • [24] K.H.C. Baser and G. Buchbauer Handbook of essential oils, science, technology, and applications, CRC Press 2009, Print ISBN: 978-1- 4200-6315-8, eBook ISBN: 978-1-4200-6316-5.
  • [25] M. Novakovic, D. Bukvicki, V. Vajs, T. Tesevic, S. Milosavljevic, P. Marin and Y. Asakawa (2018). Microbial transformation of Calamintha glandulosa essential oil by Aspergillus niger, Nat. Prod. Commun. 13, 479-482.
  • [26] G. Jard, T. Liboz, F. Mathieu, A. Guyonvarch, F. Andre, M. Delaforge and A. Lebrihi (2010). Transformation of zearalenone to zearalenone-sulfate by Aspergillus spp, World Mycotoxin J. 3, 183–191.
  • [27] J. Y. Kwak, L. K. Seok, H. Suh, Y.H. Choi, S. S. Hong, D. S. Kim and Y. C. (2016). Boo Antimelanogenic effects of luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino. Br J. Dermatol. 175, 501-511
  • [28] J. Lee and L. Zhang (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein Cell. 6, 26-41.
  • [29] Y. Asakawa (2007). Biologically active compounds from bryophytes. Pure Appl. Chem. 79, 557-580.
  • [30] H. Sawada, K. Onoda, D. Morita, E Ishitsubo, K. Matsuno, H. Tokiwa, T. Kuroda and H. Miyachi (2013). Structure-anti MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives, Bioorg. Med. Chem. Lett. 23, 6563-6568.
APA Bukvicki D, Novakovic M, Ilic-Tomic T, Nikodinovic-Runic J, Todorovic N, Veljić M, Asakawa Y (2021). Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. , 281 - 292. 10.25135/rnp.215.20.09.1812
Chicago Bukvicki Danka,Novakovic Miroslav,Ilic-Tomic Tatjana,Nikodinovic-Runic Jasmina,Todorovic Nina,Veljić Milan,Asakawa Yoshinori Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. (2021): 281 - 292. 10.25135/rnp.215.20.09.1812
MLA Bukvicki Danka,Novakovic Miroslav,Ilic-Tomic Tatjana,Nikodinovic-Runic Jasmina,Todorovic Nina,Veljić Milan,Asakawa Yoshinori Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. , 2021, ss.281 - 292. 10.25135/rnp.215.20.09.1812
AMA Bukvicki D,Novakovic M,Ilic-Tomic T,Nikodinovic-Runic J,Todorovic N,Veljić M,Asakawa Y Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. . 2021; 281 - 292. 10.25135/rnp.215.20.09.1812
Vancouver Bukvicki D,Novakovic M,Ilic-Tomic T,Nikodinovic-Runic J,Todorovic N,Veljić M,Asakawa Y Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. . 2021; 281 - 292. 10.25135/rnp.215.20.09.1812
IEEE Bukvicki D,Novakovic M,Ilic-Tomic T,Nikodinovic-Runic J,Todorovic N,Veljić M,Asakawa Y "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites." , ss.281 - 292, 2021. 10.25135/rnp.215.20.09.1812
ISNAD Bukvicki, Danka vd. "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites". (2021), 281-292. https://doi.org/10.25135/rnp.215.20.09.1812
APA Bukvicki D, Novakovic M, Ilic-Tomic T, Nikodinovic-Runic J, Todorovic N, Veljić M, Asakawa Y (2021). Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. Records of Natural Products, 15(4), 281 - 292. 10.25135/rnp.215.20.09.1812
Chicago Bukvicki Danka,Novakovic Miroslav,Ilic-Tomic Tatjana,Nikodinovic-Runic Jasmina,Todorovic Nina,Veljić Milan,Asakawa Yoshinori Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. Records of Natural Products 15, no.4 (2021): 281 - 292. 10.25135/rnp.215.20.09.1812
MLA Bukvicki Danka,Novakovic Miroslav,Ilic-Tomic Tatjana,Nikodinovic-Runic Jasmina,Todorovic Nina,Veljić Milan,Asakawa Yoshinori Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. Records of Natural Products, vol.15, no.4, 2021, ss.281 - 292. 10.25135/rnp.215.20.09.1812
AMA Bukvicki D,Novakovic M,Ilic-Tomic T,Nikodinovic-Runic J,Todorovic N,Veljić M,Asakawa Y Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. Records of Natural Products. 2021; 15(4): 281 - 292. 10.25135/rnp.215.20.09.1812
Vancouver Bukvicki D,Novakovic M,Ilic-Tomic T,Nikodinovic-Runic J,Todorovic N,Veljić M,Asakawa Y Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. Records of Natural Products. 2021; 15(4): 281 - 292. 10.25135/rnp.215.20.09.1812
IEEE Bukvicki D,Novakovic M,Ilic-Tomic T,Nikodinovic-Runic J,Todorovic N,Veljić M,Asakawa Y "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites." Records of Natural Products, 15, ss.281 - 292, 2021. 10.25135/rnp.215.20.09.1812
ISNAD Bukvicki, Danka vd. "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites". Records of Natural Products 15/4 (2021), 281-292. https://doi.org/10.25135/rnp.215.20.09.1812