Yıl: 2020 Cilt: 11 Sayı: 1 Sayfa Aralığı: 80 - 88 Metin Dili: Türkçe DOI: 10.18663/tjcl.542346 İndeks Tarihi: 21-05-2021

Çok işlevli proteinler: Moonlight proteinler

Öz:
Son yıllarda birçok proteinin birden fazla fonksiyona sahip olduğu bilgisi, bir gen - bir protein - bir fonksiyon fikrinin yerini almaya başlamıştır. Moonlight proteinler çok fonksiyonlu proteinlerin bir alt sınıfıdır. Moonlight protein kavramı, tek bir polipeptid zincirinin çoklu biyokimyasal fonksiyonları yerine getirmesini tanımlamaktadır. Bugün 300'den fazla moonlight proteini tanımlanmıştır. Bununla birlikte, veriler daha fazla moonlight proteini olabileceğini göstermektedir. Moonlight proteinlerin bilinen örnekleri arasında, reseptörler, enzimler, transkripsiyon faktörleri, adezinler ve hücre iskeleti de dahil olmak üzere çeşitli protein türleri bulunmaktadır. Bir moonlight protein, farklı hücre tiplerinde, farklı hücre içi lokasyonlarda, farklı oligomerik durumlarda bulunarak veya bir ligandın, substratın, kofaktörün ya da ürünün konsantrasyonundaki değişikliklere bağlı olarak ikinci fonksiyonunu aktifleştirebilmektedir. Ancak bu mekanizmalar, özgül değildir ve fonksiyonlar arasındaki geçişlerde bu yollardan birini ya da bunların bir kombinasyonunu kullanabilmektedir. Moonlight proteinlerin, nörodejeneratif hastalıklar ve kanser gibi hastalık fenotipleri ile ilişkili olabileceği öne sürülmektedir. Bunun yanısıra hastalık patogenezlerinde yer alarak tedavi süreçlerine bir takım zorluklar getirmekle birlikte potansiyel bir tedavi hedefi ve tedavi aracı olarak da fırsatlar sunmaktadır. Biz bu derlemede, başlıca insanlardaki mevcut moonlight proteinlerin biyokimyasal, fizyolojik ve patolojik özelliklerini ve hastalıklarla ilişkilerini tartışarak mevcut temel ve biyokimyasal bilgilerimize katkıda bulunmayı amaçladık.
Anahtar Kelime:

Multifunctional Proteins: Moonlight Proteins

Öz:
Aim: In recent years, the knowledge that many proteins have more than one function has begun to take the place of one gene – one protein - one function idea. Moonlight proteins are a subclass of multi-functional proteins. The concept of moonlight protein describes the ability of a single polypeptide chain to carry through multiple biochemical functions. Today more than 300 moonlight proteins have been identified. However, the data indicate that there may be more moonlight proteins. Known examples of moonlight proteins include a variety of protein types including receptors, enzymes, transcription factors, adhesins, and scaffold proteins. A moonlight protein can activate the second function in different cell types, at different intracellular locations, at different oligomeric states, or depending on changes in concentration of a ligand, substrate, cofactor or a reaction product. However, these mechanisms are non-specific and the mechanism of transition between functions may use one of them or their combination. Moonlight proteins have been suggested to be associated with disease phenotypes such as neurodegenerative diseases and cancer. Moonlight proteins bring some difficulties to treatment processes by taking place in pathogenesis of diseases but also offer opportunities as a potential treatment target and treatment tool. In this review, we aimed to contribute to our current basic and biochemical knowledge by discussing the biochemical, physiological and pathological features of the present moonlight proteins and their relationships with diseases.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Ezkurdia I, Juan D, Rodriguez J et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 2014; 23: 5866–78.
  • 2. O'Leary NA, Wright MW, Brister JR et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44: 733-34.
  • 3. Omenn GS, Lane L, Lundberg EK et al. Metrics for the human proteome project 2016: progress on identifying and characterizing the human proteome, including post-translational modifications. J Proteome Res 2016; 15: 3951–60.
  • 4. Jeffery CJ. Moonlighting proteins—an update. Mol BioSyst 2009; 5: 345–50.
  • 5. Jeffery CJ. Moonlighting proteins. Trends Biochem Sci 1999; 24: 8–11.
  • 6. Piatigorsky J and Wistow GJ. Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 1989; 57: 197–99.
  • 7. Wistow G and Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science 1987; 236: 1554–56.
  • 8. Cvekl A and Zheng D. Gene sharing and evolution. Hum Genomics 2009; 4: 66-67.
  • 9. Jeffery CJ. Multifunctional proteins: examples of gene sharing. Ann Med 2003; 35: 28–35.
  • 10. Copley SD. Moonlighting is mainstream: Paradigm adjustment required. Bioessays 2012; 34: 578–88.
  • 11. Copley SD. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 2003; 7: 265–72.
  • 12. Stutts MJ, Canessa CM, Olsen JC et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 1995; 269: 847–50.
  • 13. Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 2000; 275: 28421-27.
  • 14. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057-68.
  • 15. Al Jord A, Shihavuddin A, Servignat d'Aout R et al. Calibrated mitotic oscillator drives motile ciliogenesis. Science 2017; 358: 803-06.
  • 16. Suzukia CK, Rep M, van Dijl JB, Suda K, Grivell LA, Schatz G. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci 1997; 22: 118-23.
  • 17. Russo J, Jalkanen AL, Heck AM, Schmidt CM, Wilusz J, Wilusz CJ. Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells. Sci Rep 2018; 8: 16995.
  • 18. Gancedo C and Flores CL. Moonlighting proteins in yeasts. Microbiol Mol Biol Rev 2008; 72: 197–210.
  • 19. Huberts DH and van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 2010; 1803: 520–25.
  • 20. Amblee V and Jeffery CJ. Physical Features of Intracellular Proteins that Moonlight on the Cell Surface. PLoS ONE 2015; 10: e0130575.
  • 21. Chen C, Zabad S, Liu H, Wang W, Jeffery C. MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res 2018; 46: 640-44.
  • 22. Jeffery CJ. Moonlighting proteins: complications and implications for proteomics research. Drug Discov Today: Targets 2004; 3: 71–78.
  • 23. Lu Z and Hunter T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 2018; 43: 301-310.
  • 24. Kim JW and Dang CV. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005; 30: 142–50.
  • 25. Tompa P, Szász C, Buday L. Structural disorder throws new light on moonlighting. Trends Biochem Sci 2005; 30: 484–89.
  • 26. Hernández S, Amela I, Cedano J et al. Do moonlighting proteins belong to the intrinsic disordered proteins class? J J Proteomics Bioinform 2012; 5: 262–64.
  • 27. Jeffery CJ. Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol 2004; 14: 663–68.
  • 28. Jeffery CJ. An introduction to protein moonlighting. Biochem Soc Trans 2014; 42: 1679–83.
  • 29. Chaput M, Claes V, Portetelle D et al. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 1988; 332: 454–55.
  • 30. Gurney ME, Apatoff BR, Spear GT et al. Neuroleukin: a lymphokine product of lectin stimulated T cells. Science 1986; 234(4776): 574–81.
  • 31. Gurney ME, Heinrich SP, Lee MR, Yin H. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 1986; 234: 566–74.
  • 32. Watanabe, H. Takehana K, Date M, Shinozaki T, Raz A. Tumor Cell Autocrine Motility Factor Is the Neuroleukin/Phosphohexose Isomerase Polypeptide. Cancer Res 1996; 56: 2960–63.
  • 33. Xu W, Seiter K, Feldman E, Ahmed T, Chiao JW. The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 1996; 87: 4502–06.
  • 34. Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta Mol Cell Res 2017; 1864: 2043-55.
  • 35. Furukawa T, Yoshimura A, Sumizawa T et al. Angiogenic Factor. Nature 1992; 356: 668.
  • 36. Jeffery CJ. Mass spectrometry and the search for moonlighting protein. Mass Spectrom Rev 2005; 24: 772–82.
  • 37. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor. Cell 1998; 92: 735–45.
  • 38. Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 1991; 88: 8460–64.
  • 39. Kato H, Fukuda T, Parkison C, McPhie P, Cheng SY. Cytosolic thyroid hormone binding protein is a monomer of pyruvate kinase. Proc Natl Acad Sci USA 1989; 86: 7861-65.
  • 40. Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci U S A 1992; 89: 11730–34. BİLGİCİ ve ark. Moonlight proteinler 87
  • 41. Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW. Plasmin(ogen)-binding alphaenolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 2004; 343: 997–1005.
  • 42. Zhou H, Zhang L, Vartuli RL, Ford HL, Zhao R. The Eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol 2018; 96: 165-70.
  • 43. Basilion JP, Rouault TA, Massinople CM, Klausner RD, Burgess WH. The iron-responsive element-binding protein: localization of the RNA-binding site to the aconitase active-site cleft. Proc Natl Acad Sci USA 1994; 91: 574–78.
  • 44. Jeffery CJ. Protein species and moonlighting proteins: Very small changes in a protein's covalent structure can change its biochemical function. J Proteomics 2016; 134: 19-24.
  • 45. Jeffery CJ. Moonlighting proteins: complications and implications for proteomics research. Drug Discov Today: Targets 2004; 3: 71–78.
  • 46. Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 2011; 1810: 741–51.
  • 47. Jeffery CJ. Proteins with Neomorphic Moonlighting Functions in Disease. IUBMB Life 2011; 63: 489-94.
  • 48. Orosz F, Oláh J, Ovádi J. Triosephosphate isomerase deficiency: facts and doubts. IUBMB Life. 2006; 58: 703-15.
  • 49. Mazzola JL, Sirover MA. Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology 2002; 23: 603-09.
  • 50. Chuang DM, Hough C, Senatorov VV. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005; 45: 269-90.
  • 51. Liz MA, Mar FM, Franquinho F, Sousa MM. Aboard transthyretin: from transport to cleavage. IUBMB Life 2010; 62: 429-35.
  • 52. Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des 2008; 14: 3219-30.
  • 53. Babady NE, Pang YP, Elpeleg O, Isaya G. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A 2007; 104: 6158-63.
  • 54. Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2019; 234: 8327-41.
  • 55. Whitesell L and Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5: 761-72.
  • 56. Min KW, Lee SH, Baek SJ. Moonlighting proteins in cancer. Cancer Lett 2016; 370: 108–16.
  • 57. Song X, Wang X, Zhuo W, et al. The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem 2010; 285: 40039-49.
  • 58. Hance MW, Dole K, Gopal U et al. Secreted Hsp90 is a novel regulator of the epithelial to mesenchymal transition (EMT) in prostate cancer. J Biol Chem 2012; 287: 37732-44.
  • 59. Díaz-Ramos A, Roig-Borrellas A, García-Melero A, López-Alemany R. α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012; 2012: 156795.
  • 60. Hara MR, Thomas B, Cascio MB et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA 2006; 103: 3887-89.
  • 61. Daddacha W, Koyen AE, Bastien AJ, Head PE, Dhere VR, Nabeta GN. SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination. Cell Rep 2017; 20: 1921-35.
  • 62. Broadley SA, Vanags D, Williams B et al. Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler 2009; 15: 329-36.
  • 63. Vanags D, Williams B, Johnson B et al. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 2006; 368: 855-63.
  • 64. Williams B, Vanags D, Hall S et al. Efficacy and safety of chaperonin 10 in patients with moderate to severe plaque psoriasis: evidence of utility beyond a single indication. Arch Dermatol 2008; 144: 683-85.
  • 65. Yang J, Chen Z, Liu N, Chen Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol 2018; 19: 158-65.
  • 66. Hernández S, Ferragut G, Amela I et al. MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Res 2014; 42: 517-20.
  • 67. Chapple CE, Robisson B, Spinelli L, Guien C, Becker E, Brun C. Extreme multifunctional proteins identified from a human protein interaction network. Nat Commun 2015; 6: 7412.
  • 68. Prieto C and Javier De Las Rivas J. APID: Agile Protein Interaction Data Analyzer. Nucleic Acids Res 2006; 34: 298–302.
APA Bilgici B, Ürkmez S, CİVİL ÜRKMEZ Y (2020). Çok işlevli proteinler: Moonlight proteinler. , 80 - 88. 10.18663/tjcl.542346
Chicago Bilgici Birşen,Ürkmez Sebati Sinan,CİVİL ÜRKMEZ YEŞİM Çok işlevli proteinler: Moonlight proteinler. (2020): 80 - 88. 10.18663/tjcl.542346
MLA Bilgici Birşen,Ürkmez Sebati Sinan,CİVİL ÜRKMEZ YEŞİM Çok işlevli proteinler: Moonlight proteinler. , 2020, ss.80 - 88. 10.18663/tjcl.542346
AMA Bilgici B,Ürkmez S,CİVİL ÜRKMEZ Y Çok işlevli proteinler: Moonlight proteinler. . 2020; 80 - 88. 10.18663/tjcl.542346
Vancouver Bilgici B,Ürkmez S,CİVİL ÜRKMEZ Y Çok işlevli proteinler: Moonlight proteinler. . 2020; 80 - 88. 10.18663/tjcl.542346
IEEE Bilgici B,Ürkmez S,CİVİL ÜRKMEZ Y "Çok işlevli proteinler: Moonlight proteinler." , ss.80 - 88, 2020. 10.18663/tjcl.542346
ISNAD Bilgici, Birşen vd. "Çok işlevli proteinler: Moonlight proteinler". (2020), 80-88. https://doi.org/10.18663/tjcl.542346
APA Bilgici B, Ürkmez S, CİVİL ÜRKMEZ Y (2020). Çok işlevli proteinler: Moonlight proteinler. Turkish Journal of Clinics and Laboratory, 11(1), 80 - 88. 10.18663/tjcl.542346
Chicago Bilgici Birşen,Ürkmez Sebati Sinan,CİVİL ÜRKMEZ YEŞİM Çok işlevli proteinler: Moonlight proteinler. Turkish Journal of Clinics and Laboratory 11, no.1 (2020): 80 - 88. 10.18663/tjcl.542346
MLA Bilgici Birşen,Ürkmez Sebati Sinan,CİVİL ÜRKMEZ YEŞİM Çok işlevli proteinler: Moonlight proteinler. Turkish Journal of Clinics and Laboratory, vol.11, no.1, 2020, ss.80 - 88. 10.18663/tjcl.542346
AMA Bilgici B,Ürkmez S,CİVİL ÜRKMEZ Y Çok işlevli proteinler: Moonlight proteinler. Turkish Journal of Clinics and Laboratory. 2020; 11(1): 80 - 88. 10.18663/tjcl.542346
Vancouver Bilgici B,Ürkmez S,CİVİL ÜRKMEZ Y Çok işlevli proteinler: Moonlight proteinler. Turkish Journal of Clinics and Laboratory. 2020; 11(1): 80 - 88. 10.18663/tjcl.542346
IEEE Bilgici B,Ürkmez S,CİVİL ÜRKMEZ Y "Çok işlevli proteinler: Moonlight proteinler." Turkish Journal of Clinics and Laboratory, 11, ss.80 - 88, 2020. 10.18663/tjcl.542346
ISNAD Bilgici, Birşen vd. "Çok işlevli proteinler: Moonlight proteinler". Turkish Journal of Clinics and Laboratory 11/1 (2020), 80-88. https://doi.org/10.18663/tjcl.542346