Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu

Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 111 - 125 Metin Dili: Türkçe DOI: 10.17714/gumusfenbil.715085 İndeks Tarihi: 24-05-2021

Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu

Öz:
Birçok endüstriyel tesisin hammadde kaynağı olarak kullanılan yağların hidrolizi önemli bir kimyasal prosestir. Yağasitleri yenilenebilir kaynaklardan üretilen yağların hidrolizi ile sentezlenir. Son yıllarda bitkisel ve hayvansal yağlaraalternatif mikroalglerden elde edilen yağların hammadde kaynağı olarak kullanılması giderek yaygınlaşmaktadır. Buçalışmada Design Expert bilgisayar programı yardımı ile Chlorella protothecoides mikroalg yağının Noopazyme lipazıkatalizörlüğünde hidroliz tepkimesine etki eden parametrelerin (lipaz miktarı, sıcaklık, yağ/su (g/g)) etkileri incelenerekyüksek dönüşümle serbest yağ asitleri (SYA) elde etmek amacı ile optimizasyonu yapılmıştır. Deneysel çalışmalarsonucunda en yüksek SYA içeriği (%98), lipaz miktarı %15, yağ/su oranı (g/g) 0.20 ve sıcaklık 55°C olduğu koşullardaelde edilmiştir. Ayrıca Noopazyme lipazının 4 kez tekrar kullanılması sonucunda aktivitesinin %40’ını kaybettiğibelirlenmiştir.
Anahtar Kelime:

Statistical optimization of hydrolysis reaction process parameters by lipase catalysis of microalgae oil

Öz:
Hydrolysis of oils used as the raw material source of many industrial plants is an important chemical process. Fatty acids are synthesized by hydrolysis of oils produced from renewable sources. In recent years, the use of oils derived from microalgae as an alternative to vegetable and animal oils has become commonly increasing. In this study, the effects of the parameters (lipase amount, temperature, oil / water (w/w)) of Chlorella protothecoides microalgae oil were analyzed to obtain high conversion of free fatty acids with the Design Expert computer program. As a result of the experimental studies, the highest FFA content (98%) was obtained under the conditions where lipase amount was 15%, oil/water ratio (g/g) 0.20 and temperature was 55°C. In addition, as a result of 4 reuse of Noopazyme lipase, it was determined that it lost 40% of its activity.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aguieiras, E. C. G., Oliveira, E. D., Castro, A. M., Langone, M. A. P. and Freire, D. M. G. (2014). Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, 135, 315– 321. https://doi.org/10.1016/j.fuel.2014.06.069
  • Altın, N. (2017). Chlorella variabilis türü mikroalgin büyümesine ve yağ içeriğine etki eden parametrelerin belirlenmesi, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.
  • Bahadi, M., Yusoff, M. F., Salimon, J. and Derawi, D. (2020). Optimization of response surface methodology by d- optimal design for alkaline hydrolysis of crude palm kernel oil. Sains Malaysiana, 49, 29-41. https://doi.org/10.17576/jsm-2020-4901-04
  • Castro, H. F., Mendes, A. A., Santos, J. C. and Aguiar, C. L. (2004). Modification of oils and fats by biotransformation. Química Nova, 27, 146–156. https://doi.org/10.1590/S0100- 40422004000100025
  • Chen, W., Sun, S., Liang, S., Peng, L., Wang, Y. and Shen, M. (2014). Lipase-catalyzed hydrolysis of linseed oil: optimization using response surface methodology. Journal of Oleo Science, 64, 619- 628. https://doi.org/10.5650/jos.ess13189
  • Chu, B. S., Quek, S. Y. and Baharin, B. S. (2003). Optimization of enzymatic hydrolysis for concentration of vitamin E in palm fatty acid distillate. Food Chemistry, 80, 295–302. https://doi.org/10.1016/S0308-8146(02)00178-4
  • David, F., Sandra, P. and Vickers, A. K. (2005). Column selection for the analysis of fatty acids methyl esters. Application Agilent Technologies Incorporation.
  • Hasan, F., Shah, A. A. and Hameed, A. (2009). Methods for detection and characterization of lipases: a comprehensive review. Biotechnology Advances, 27, 782–798. https://doi.org/10.1016/j.biotechadv.2009.06.00 1
  • Hung, C. S., Nguyen, C. H., Nguyen, M. L., Tran, P. T., Wang, F. M. and Guan, Y. L. (2018). Liquid lipase‐catalyzed hydrolysis of gac oil for fatty acid production: Optimization using response surface methodology. Biotechnology Progress, 34, 1129-1136. https://doi.org/10.1002/btpr.2714
  • Kumar, T., Kumar, S. and Kumar, S. (2003). Adsorption of resorcinol and catechol on granular activated carbon: equilibrium and kinetics. Pergamon Carbon, 41, 3015–3025. https://doi.org/10.1016/S0008-6223(03)00431-7
  • Maruyama, T., Nakajima, M., Ichikawa, S., Nabetani, H., Furusaki, S. and Seki, M. (2000). Oil–water interfacial activation of lipase for interesterification of triglycerideand fatty acid. Journal of American Oil Chemistry Society, 77, 1121–1127. https://doi.org/10.1007/s11746-000- 0176-4
  • Montgomery, C. D. (2012). Design and Analysis of Experiments (8th ed.). New York: John Wiley & Sons.
  • Murty, V. R., Bhat, J. and Muniswaran, P. K. A. (2002). Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnology and Bioprocess Engineering, 7, 57–66. https://doi.org/10.1007/BF02935881
  • Neena, N. G. (1997). Application of lipase. Journal of American Oil Chemistry Society, 74, 621–634. https://doi.org/10.1007/s11746-997-0194-x
  • Nigiz, F. U. (2019). Synthesis of a novel graphene– kaolin–alginate adsorbent or dye removal, and optimization of the adsorption by response surface methodology. Research on Chemical Intermediates, 45, 3739–3753. https://doi.org/10.1007/s11164-019-03818-z
  • Oliveira, E. D., Silva, P. R., Ramos, A. P., Aranda D. A. G. and Freire, D. M. G. (2011). Study of soybean oil hydrolysis catalyzed by Thermomyces lanuginosus lipase and its application to biodiesel production via hydroesterification. Enzyme Research, https:// doi.org/10.4061/2011/618692.
  • Özgen, M. (2013). Halofilik arkeal kaynaklı lipaz üretim koşullarının optimizasyonu ve aktif lipazın saflaştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Rooney, D. and Weatherley, L. R. (2001). The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid–liquid reactor. Process Biochemistry, 36, 947–953. https://doi.org/10.1016/S0032-9592(01)00130-3
  • Russell, V. L. (2009). Response surface methods in using RSM. Journal of Statistical Software, 32, 1-17. https://doi.org/10.18637/jss.v032.i07
  • Sharma, A., Chaurasia, P. S. and Dalai, A. K. (2012). Enzymatic hydrolysis of cod liver oil for the fatty acids production. Catalysis Today, 207, 93–100. https://doi.org/10.1016/j.cattod.2012.05.006
  • Sharma, S., Gangal, S. and Rauf, A. (2009). Lipase mediated hydrolysis of Mimusops elengi Parkinsonia aculeata and seed oils for determining the positional distribution of fatty acids. Industrial Crops and Products, 30, 325– 328. https://doi.org/10.1016/j.indcrop.2009.04.004
  • Shrivastsvs, A., Sandagar, P., Baja, I. and Singhal, R. (2008). Media optimization for the production of U-linolenic acid by Cunninghamella Echinulata var. elegans MTCC 522 using response surface methodology. International Journal of Food Engineering, 4, 1–32. https://doi.org/10.2202/1556-3758.1178
  • Stoytcheva, M., Montero, G., Zlatev, R., León, J. A. and Gochev, V. (2012). Analytical methods for lipases activity determination: a review. Current Analytical Chemistry, 8, 400-407. https://doi.org/10.2174/157341112801264879
  • Sousa, J. S., Cavalcanti-Oliveira, E. D., Aranda, D. A. G. and Freire, D. M. G. (2010). Application of lipase from the physic nut (Jatropha curcas L.) to a new hydrid (enzyme/chemical) hydroesterification process for biodiesel production. Journal of Moleculaer Catalysis B: Enzymatic, 65, 133–137. https://doi.org/10.1016/j.molcatb.2010.01.003
  • Talukder, M. M. R., Wu, J. C., Fen, N. M. and Melissa, Y. L. S. (2010a). Two step lipase catalysis for production of biodiesel. Biochemical Engineering Journal, 49, 207–212. https://doi.org/10.1016/j.bej.2009.12.015
  • Talukder, M. M. R, Wu J. C. and Chua, L. P. L. (2010b). Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification. Energy Fuel, 24, 2016–2019. https://doi.org/10.1021/ef9011824
  • Ting, W. J, Huang, C. M., Nair G. R. and Wu W. T. (2008). An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. Journal of the Chinese Institute of Chemical Engineers, 39, 203–210. https://doi.org/10.1016/j.jcice.2008.01.004
  • Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y. and Shimada, Y. (2007). Enzymatic production of fatty acid methyl esters by hydrolysis of acid oil followed by esterification. Journal of American Oil Chemists’ Society, 84, 1015–1021. https://doi.org/10.1007/s11746-007-1143-4
  • Xin, C., Wei, D. and Liu D. (2008). Effect of several factors on soluble lipase mediated biodiesel preparation in the biphasic aqueous-oil systems. Journal of Microbiology and Biotechnology, 24, 2097-2102. https://doi.org/ 10.1007/s11274-008- 9714-6
  • Yadav, G. D. and Borkar, I. V. (2009). Synthesis of nbutyl acetamide over immobilized lipase. Journal of Chemical Technology and Biotechnology, 84, 420–426. https://doi.org/10.1002/jctb.2056
  • Yadav, G. D. and Devi, K. M. (2004). Kinetics of Hydrolysis of Tetrahydrofurfuryl Butyrate in a Three Phase System Containing Immobilized Lipase from Candida Antarctica. Biochemical Engineering Journal, 17, 57–63. https://doi.org/10.1016/S1369-703X(03)00125- 6
  • Yadav, G. D., Sajgure, A. D. and Dhoot, S. B. (2008). Insight into microwave irradiation andenzyme catalysis in enantioselective resolution of RSmethyl mandelate. Journal of Chemical Technology and Biotechnology, 83, 145–1153. https://doi.org/10.1002/jctb.1975
  • Yan, J., Liu, S., Hu, J., Gui, X., Wang, G. and Yan, Y. (2011). Enzymatic enrichment of polyunsaturated fatty acids using novel lipase preparations modified by combination of immobilization and fish oil treatment. Bioresource Technology, 102, 7154–7158. https://doi.org/10.1016/j.biortech.2011.04.065
  • Yuan, X., Liu, J., Zeng, G., Shi, J., Tong, J. and Huang, G. (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy, 33, 1678–1684.
  • Zenevicz, M. P., Jacques, A., Furigo, A., Oliveira, J. V. and Oliveira, D. (2016). Enzymatic hydrolysis of soybean and waste cooking oils under ultrasound system. Industrial Crops and Products, 80, 235– 241. https://doi.org/10.1016/j.indcrop.2015.11.031
APA KUTLUK T (2021). Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. , 111 - 125. 10.17714/gumusfenbil.715085
Chicago KUTLUK Togayhan Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. (2021): 111 - 125. 10.17714/gumusfenbil.715085
MLA KUTLUK Togayhan Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. , 2021, ss.111 - 125. 10.17714/gumusfenbil.715085
AMA KUTLUK T Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. . 2021; 111 - 125. 10.17714/gumusfenbil.715085
Vancouver KUTLUK T Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. . 2021; 111 - 125. 10.17714/gumusfenbil.715085
IEEE KUTLUK T "Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu." , ss.111 - 125, 2021. 10.17714/gumusfenbil.715085
ISNAD KUTLUK, Togayhan. "Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu". (2021), 111-125. https://doi.org/10.17714/gumusfenbil.715085
APA KUTLUK T (2021). Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 111 - 125. 10.17714/gumusfenbil.715085
Chicago KUTLUK Togayhan Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi 11, no.1 (2021): 111 - 125. 10.17714/gumusfenbil.715085
MLA KUTLUK Togayhan Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.11, no.1, 2021, ss.111 - 125. 10.17714/gumusfenbil.715085
AMA KUTLUK T Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2021; 11(1): 111 - 125. 10.17714/gumusfenbil.715085
Vancouver KUTLUK T Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2021; 11(1): 111 - 125. 10.17714/gumusfenbil.715085
IEEE KUTLUK T "Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu." Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11, ss.111 - 125, 2021. 10.17714/gumusfenbil.715085
ISNAD KUTLUK, Togayhan. "Mikroalg yağının lipaz katalizli hidroliz tepkimesine etki eden proses parametrelerinin istatistiksel yöntemle optimizasyonu". Gümüşhane Üniversitesi Fen Bilimleri Dergisi 11/1 (2021), 111-125. https://doi.org/10.17714/gumusfenbil.715085