Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 264 - 280 Metin Dili: Türkçe DOI: 10.17714/gumusfenbil.765981 İndeks Tarihi: 24-05-2021

Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi

Öz:
Nadir toprak elementleri (NTE), yüksek sıcaklığa, aşınmaya, korozyona karşı dirençli olan yüksek teknolojik ürünlerinüretiminde kullanılmaktadır. Yüksek ekonomik değere ve temin edilme riskine sahip olmaları nedeniyle kritikhammaddeler olarak listelenmektedirler. Elektrikli-elektronik cihazlar (cep telefonu, bilgisayar, TV gibi), şarj edilebilirpiller (NiMH piller), modern tıp cihazları (MR cihazı gibi), rüzgâr türbinleri, katalitik dönüştürücüler, motorlar (uçak,elektrikli araç motorları), cam ve seramik sanayi, petrol rafinerisi, güneş panelleri gibi ileri teknolojik ürünlerinuygulandığı pek çok alanda kullanılmaktadırlar. Hibrit ve elektrikli araçların ve rüzgâr türbinlerin yaygınlaşmasıylaberaber nadir toprak elementlerine olan talep giderek artmaktadır. NTE içeren pek çok mineral bulunmasına karşınendüstriyel öneme sahip en yaygın mineraller bastnazit, monazit ve ksenotimdir. Bu minerallerin dışında mıknatıslar,floresan lambalar, katalizörler ve şarj edilebilir piller de, nadir toprak elementi içeren önemli ikincil kaynaklardır. Buçalışmada, NTE’nin kritik hammadde olarak önemi, potansiyeli, birincil ve ikincil kaynaklardan üretim teknolojilerideğerlendirilmiştir. Minerallerden ve ikincil kaynaklardan geri kazanım yöntemleri akım şemalarıyla berabertartışılmıştır. Önemli bir ikincil kaynak olan Nd-Fe-B mıknatıslar, nikel-metal hidrür piller ve floresan lamba atıklarıdetaylı olarak irdelenmiştir.
Anahtar Kelime:

Production of rare earth elements from primary and secondary resources

Öz:
Rare earth elements (REE) are utilized in the production of high-tech products that are resistant to high temperature, abrasion, and corrosion. They are termed critical raw materials due to their high economic value and risk of availability. REE are used in many fields where advanced technological products such as electric-electronic devices (mobile phones, computers, TVs), rechargeable batteries (NiMH batteries), modern medical devices (MR), wind turbines, catalytic converters, engines (aircraft, electric vehicle engines), glass and ceramic industry oil refinery, solar panels are applied. With the widespread use of hybrid and electric vehicles and wind turbines, the demand for rare earth elements is increasing. Although there are many REE-bearing minerals, the most common minerals of industrial interest are bastnäzite, monazite and xenotime. In addition to these minerals, magnets, fluorescent lamps, catalysts and rechargeable batteries are also secondary sources containing important rare earth elements. In this study, their importance, potential, and production technologies of primary and secondary sources are evaluated. Recovery methods from minerals and secondary sources are discussed with flow charts. Important secondary sources such as Nd-Fe-B magnets, nickel-metal hydride batteries, and fluorescent lamp waste are discussed in detail.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abrahami, S. T., Xiao, Y. and Yang, Y. (2015). Rareearth elements recovery from post-consumer hard-disc drives. Mineral Processing and Extractive Metallurgy, 124(2), 106-115. https://doi.org/10.1179/1743285514Y.00000000 84
  • Akıska, E., Karakaş, Z. and Öztürk, C. (2019). Uranium, thorium and rare earth element deposits of Turkey. F. Pirajno, T. Ünlü, C. Dönmez, M.B. Şahin (Ed.), Mineral Resources of Turkey (s. 655-679). Springer. https://doi.org/10.1007/978- 3-030-02950-0_14
  • Akkurt, S., Topkaya, Y. and Ozbayoglu, G. (1993). Extraction of rare earths from a Turkish ore. Physicochemical Problems of Mineral Processing, 27, 68-76.
  • Anderson, L. (1986). Occurrence and processing of rare earth minerals, Erzmetall, 39(4), 152-157.
  • Bandara, H. M. D., Field, K. D. and Emmert, M. H., 2016. Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chemistry, 18,753-759. https://doi.org/10.1039/C5GC01255D.
  • Behera, S. S. and Parhi, P. K. (2016). Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Separation and Purification Technology, 160, 59-66. https://doi.org/10.1016/j.seppur.2016.01.014.
  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. and Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1-22. https://doi.org/10.1016/j.jclepro.2012.12.037.
  • Borra, C. R., Mermans, J., Blanpain, B., Pontikes, Y., Binnemans, K. and Gerven, T. V. (2016). Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 92, 151-159. https://doi.org/10.1016/j.mineng.2016.03.002.
  • Chan, T. N. (1992). A new beneficiation process for the treatment of supergene monazite ore. Rare Earths: Extraction. Preparation and Applications. TMS and AusIMM, San Diego, 77- 94.
  • Cheng, T. W. (2000). The point of zero charge of monazite and xenotime. Minerals Engineering, 13(1), 105-109. https://doi.org/10.1016/S0892- 6875(99)00153-3
  • Cheng, T. W., Holtham, P. N. and Tran, T. (1993). Froth flotation of monazite and xenotime. Minerals Engineering, 6(4), 341-351.
  • Cheng, T. W., Partridge, A. C., Tran, T. A. M. and Wong, P. L. M. (1994). The surface properties and flotation behaviour of xenotime. Minerals Engineering, 7(9), 1085-1098. https://doi.org/10.1016/0892-6875(94)90001-9.
  • Connelly, N. G., Damhus, T., Hartshorn, R. M. and Hutton, A. T. (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Royal Society of Chemistry.
  • Croat, J. J., Herbst, J. F., Lee, R. W. and Pinkerton, F. E. (1984). Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets (invited). Journal of Applied Physics, 55(6), 2078-2082.
  • Dai, S. and Finkelman, R. B. (2018). Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186, 155-164. https://doi.org/10.1016/j.coal.2017.06.005.
  • De Michelis, I., Ferella, F., Varelli, E. F. and Veglio, F. (2011). Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses. Waste Management, 31, 2559-2568.
  • Dostal, J. (2017). Rare earth element deposits of alkaline igneous rocks. Resources, 6(34), 1-2.
  • Du, X. and Graedel, T. E. (2011). Global rare earth inuse stocks in NdFeB permanent magnets. Journal of Industrial Ecology, 15(6), 836-843. https://doi.org/10.1111/j.1530- 9290.2011.00362.x.
  • Dushyanthaa, N., Batapolaa, N., Ilankoonb, I. M. S. K., Rohithaa, S., Premasiria, R., Abeysinghea, B., Ratnayakea, N. and Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122, 103521.
  • Erust, C., Akcil, A., Tuncuk, A., Deveci, H. and Yazici, E. Y. (2019). A Multi-stage process for recovery of neodymium (Nd) and dysprosium (Dy) from spent hard disc drives (HDDs). Mineral Processing and Extractive Metallurgy Review, https://doi.org/ 10.1080/08827508.2019.1692010.
  • European Commission, (2017). Critical raw materials, in the communication on the list of critical raw materials 2017. Erişim adresi https://eurlex.europa.eu/legal-content/.
  • European Commission, (2019). Recovery of critical and other raw materials from mining waste and landfills. Erişim adresi https://ec.europa.eu/jrc/en/publication/recoverycritical-and-other-raw-materials-mining-wasteand-landfills.
  • Ferron, C. J., Bulatovic, S. M. and Salter, R. S. (1991). Beneficiation of rare earth oxide mineral. Material Science Forum, 251-270.
  • Franus, W., Wiatros-Motyka, M. M. and Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22, 9464-9474. https://doi.org/10.1007/s11356-015-4111-9.
  • Gao, L. and Chen, Y. (2010). A study on the rare earth ore containing scandium by high gradient magnetic separation. Journal of Rare Earths, 28(4), 622-626. https://doi.org/10.1016/S1002- 0721(09)60167-8.
  • Greinacher, E. (1981). History of rare earth applications, rare earth market today: Overview. In Gschneidner, Jr., K.A. (ed.), Industrial Applications of Rare Earth Elements ACS Symposium Series (pp. 3-18). Washington, DC 164, American Chemical Society.
  • Gschneidner, K.A. (1990). Physical properties of rare earth metals. Bulletin Alloy Phase Diagrams, 11, 216-224.
  • Gschneidner, K. A., Beaudry, B. J. and Capellen, J., 1995. Rare earth metals, ASM Metals Handbook, (s. 720-732). Metals Park, OH, ASM International.
  • Gschneidner, K. A. and Daane, A. H. (1988). Physical metallurgy. Gschneidner, K.A. and Eyring, L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, (s. 409-484). North Holland, Amsterdam.
  • Gschneidner, K. A. (2011a). Globalization and the Sustainability of the Rare Earths, Materials Engineering 220, Iowa State University, Ames, IA.
  • Gschneidner, K. A. (2011b). The rare earth crisis-The supply and demand situation for 2010-2015. Material Matters, 6(2).
  • Guy, P. J., Bruckard, W. J. and Vaisey, M. J. (2000). Beneficiation of Mt weld rare earth oxides by gravity concentration, flotation, and magnetic separation. Seventh Mill Operators’ Conference (pp. 197-205). AusIMM, Kalgoorlie.
  • Habib, K. and Wenzel, H. (2014). Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. Journal of Cleaner Production, 84, 348-359. https://doi.org/10.1016/j.jclepro.2014.04.035.
  • Haque, N., Hughes, A., Lim, S. and Vernon, C. (2014). Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 3(4), 614-635. https://doi.org/10.3390/resources3040614.
  • Hassoy, H. (2007). Nadir Toprak Elementleri Alaşımlı Sabit Mıknatıslı Rulo Tipi Kuru Manyetik Ayırıcılarda İşlem Parametreleri ile Ayırım Performansı Arasındaki İlişkilerin İncelenmesi, Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Hedrick, J. B., Sinha, S. P. and Kosynkin, V. D. (1997). Loparite, a rare-earth ore (Ce, Na, Sr, Ca) (Ti, Nb, Ta, Fe+3) O3. Journal of Alloys and Compounds, 250, 467-470. https://doi.org/10.1016/S0925-8388(96)02824- 1.
  • Higashiyama, Y. and Asano, K. (2007). Recent progress in electrostatic separation technology. Particulate Science and Technology, 16(1), 77- 90. https://doi.org/10.1080/02726359808906786.
  • Hoogerstraete, T. V., Blanpain, B., Gerven, T. V. and Binnemans, K. (2014). From NdFeB magnets towards the rare-earth oxides: A recycling process consuming only oxalic acid. RSC Advances, 109(4), 64099-64111.
  • Houot, R., Cuif, J. P., Mottot, Y. and Samama, J. C. (1991). Recovery of rare earth minerals with emphasis on flotation process. Siribumrungsukha, B., Arrykul, S., Sanguan Sai, P., Pungrassami, T., Sikong, L. and Kooptarnon, K. (Ed.), Proceedings of the International Conference of Rare Earth Minerals and Minerals for Electronic Uses (ss. 301-324). Hat Yai, Thailand.
  • Hua, Z. (2016). Rare earth recycling from NdFeB. Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd.
  • Icin, K. (2016). Nd-Fe-B Esaslı Sert (Kalıcı) Mıknatısların Melt Spinning Yöntemiyle Üretimi, Yapısal ve Manyetik Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Ito, S., Yotsumoto, H. and Sakamoto, H. (1991). Magnetic separation of monazite and xenotime. Proceedings of the International Conference on Rare Earth Minerals and Minerals for Electronic Uses (pp. 279-299). Prince Songkla University, Hat Yai, TH.
  • Jackson, W. D. and Christiansen, G. (1993). International strategic minerals inventory summary report-Rare earth oxides. , Denver, CO: U.S. Geological Survey Circular 930-N, U.S. Geological Survey, Map Distribution.
  • Jha, M. K., Kumari, A., Panda, R., Kumar, J. R., Yoo, K. and Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 165, 2-26. https://doi.org/10.1016/j.hydromet.2016.01.035.
  • Jiake, L. and Xiangyong, C. (1984). Research into the recovery of high-grade rare-earth concentrate from Baotou complex iron ore, China. IMM and Chinese Society of Metals PRC (Ed.), Processing, Mineral and Metallurgy, Extractive (s. 663-675). Kunming, Yunnan Province.
  • Jiang, Y. R., Shibayama, A., Liu, K. and Fujita, T. (2004). Recovery of rare earths from the spent optical glass by hydrometallurgical process. Canadian Metallurgical Quarterly, 43, 431-438. https://doi.org/10.1179/cmq.2004.43.4.431.
  • Jiang, Y.R., Shibayama, A., Liu, K.J. and Fujita, T. (2005). A hydrometallurgical process for extraction of lanthanum, yttrium and gadolinium from spent optical glass. Hydrometallurgy, 76, 1- 9. https://doi.org/10.1016/j.hydromet.2004.06.010.
  • Jordens, A., Cheng, Y. P. and Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97- 114. https://doi.org/10.1016/j.mineng.2012.10.017.
  • Kanazawa, Y. and Kamitani, M. (2006). Rare earth minerals and resources in the world. Journal of Alloys and Compounds, 408-412, 1339-1343. https://doi.org/10.1016/j.jallcom.2005.04.033.
  • Kashiwakura, S., Kumagai, Y., Kubo, H. and Wagatsuma, K. (2013). Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 solvent. Open Journal of Physical Chemistry, 3(2), 69-75. doi: 10.4236/ojpc.2013.32009.
  • Kosynkin, V. D., Moiseev, S. D., Peterson, C. H. and Nikipelov, B. V. (1993). Rare earths industry of today in the commonwealth of independent states. Journal of Alloys and Compounds, 192(1- 2), 118-120. https://doi.org/10.1016/0925- 8388(93)90204-Z.
  • Krishnamurthy, N. and Gupta, C. K. (2016). Extractive Metallurgy of Rare Earths (Second Edition). CRC Press-Taylor & Francis Group.
  • Kul, M., Topkaya, Y. ve Karakaya, I. (2008). Rare earth double sulfates from pre-concentrated bastnasite, Hydrometallurgy, 93(3-4), 129-135. https://doi.org/10.1016/j.hydromet.2007.11.008.
  • Kumar, V., Jha, M. K., Kumari, A., Panda, R., Kumar, J. R. and Lee, J. Y. (2014). Recovery of rare earth metals (REMs) from primary and secondary resources: A review. EPD Congress-2014, (TMS). San Diego, California.
  • Kursun, İ. and Terzi, M. (2018). Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: A review, Journal of Mining & Environment, 9(3), 641-655.
  • Kurşun, İ., Özdemir, O., Tombal, T. D., Terzi, M. and Hacıfazlıoğlu, H. (2017). Bastnazit Kompleks Cevherinden (Eskişehir, Türkiye) Bazı Nadir Toprak Elementlerinin (Ce, Nd, La) Asit Liçi ile Çözünürlüklerinin Araştırılması. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(1), 207-214.
  • Kurşun, I. and Terzi, M. (2018). Isparta çanaklı cevherinden sülfürik asit liçi ile NTE ekstraksiyonunun deneysel tasarımı. Bilimsel Madencilik, 57(4), 267-280.
  • Kurşunoğlu, S., Top, S., Hussaini, S., Gökçen, H. S., Altiner, M., Ozsarac, S. and Kaya, M. (2020). Extraction of Lanthanum and Cerium from A Bastnasite Ore by Direct Acidic Leaching. Bilimsel Madencilik, 59(2), 85-92.
  • Kuzmin, V. I., Pashkov, G. L., Lomaev, V. G., Voskresenskaya, E. N. and Kuzmina, V. N. (2012). Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129-130, 1-6.
  • Li, F., Wang, J. and Zeng, X. (1988). A process for the recovery of RE minerals with a chelating collector. Bautista, R.G. and Wong, M.M. (Ed.), Rare Earths, (s. 71-79). Warrendale, PA: The Minerals, Metals and Materials Society.
  • Li, J., Chen, Z., Shen, B., Xu, Z. and Zhang, Y. (2017). The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate. Journal of Cleaner Production, 140, 1148-1155. https://doi.org/10.1016/j.jclepro.2016.10.050.
  • Long, K. R., Van Gosen, B. S., Foley, N. K. and Cordier, D. (2010). The Principal Rare Earth Elements Deposits of the United States-A Summary of Domestic Depositsand a Global Perspective. Reston, VA, USA: U.S. Geological Survey Scientific Investigations Report 2010-5220, 1- 104.
  • Long, K. R., Van Gosen, B. S., Foley, N. K. and Cordier, D. (2012). The principal rare earth elements deposits of the United States: a summary of domestic deposits and a global perspective. Sinding-Larsen, R., Wellmer, F.-W. (Eds.), Nonrenewable Resource Issues: Geoscientific and Societal Challenges (s.131-155). Netherlands: Springer.
  • Lyman, J. W. and Palmer, G. R. (1993). Recycling of neodymium iron boron magnet scrap. Report of Investigations 9481. United States Bureau of Mines.
  • Lyman, J. W. and Palmer, G. R. (1993). Recycling of rare earths and iron from NdFeB magnet scrap. High Temperature Material Processes, 11(1-4), 175-187. https://doi.org/10.1515/HTMP.1993.11.1-4.175.
  • McGill, I. (2000). Rare earth elements. W.-V.V.G., & C. KGaA (Eds.), Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Menad, N. (1999). Cathode ray tube recycling. Resources, Conservation and Recycling, 26, 143- 154. https://doi.org/10.1016/S0921- 3449(98)00079-2.
  • Moustafa, M. I. and Abdelfattah, N. A. (2010). Physical and chemical beneficiation of the Egyptian Beach Monazite. Resource Geology, 60(3), 288- 299. https://doi.org/10.1111/j.1751- 3928.2010.00131.x.
  • MTA, (2017). Dünya’da ve Türkiye’de nadir toprak elementleri, Fizibilite Etütleri Daire Başkanlığı, Maden Serisi 5, 24s.
  • Onal, M. A. R., Aktan, E., Borra, C. R., Blanpain, B., Gerven, T. V. and Guo, M. (2017). Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. Hydrometallurgy, 167, 115-123.
  • Onal, M. A. R., Borra, C. R., Guo, M., Blanpain, B. and Gerven, T. V. (2015). Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching. Journal of Sustainable Metallurgy, 1,199-215. https://doi.org/10.1007/s40831-015-0021-9.
  • Özbayoglu, G. and Atalay, U. M. (2000). Beneficiation of bastnaesite by a multi-gravity separator. Journal of Alloys and Compounds, 303-304, 520- 523. https://doi.org/10.1016/S0925- 8388(00)00639-3.
  • Parthasarathy, P. and Bulbule, K. A. (2019). Recovery of rare earth elements from spent hard disc drive magnets- urban mining suitable for developing countries. American Journal of Engineering Research (AJER), 8(1), 137-145.
  • Rabatho, J. P., Tongamp, W., Takasaki, Y., Haga, K. and Shibayama, A. (2012). Recovery of Nd and Dy from rare earth magnetic waste sludge by hydrometallurgical process. Journal of Material Cycles and Waste Management, 15, 171-178. https://doi.org/10.1007/s10163-012-0105-6.
  • Rademaker, J. H., Kleijn, R. and Yang, Y. (2013). Recycling as a strategy against rare earth element criticality: A systemic evaluation of the potential yield of NdFeB magnet recycling. Environmental Science and Technology, 47, 10129-10136.
  • Reisdörfera, G., Bertuol, D. and Tanabe, E. H. (2019). Recovery of neodymium from the magnets of hard disk drives using organic acids. Minerals Engineering, 143, 105938. https://doi.org/10.1016/j.mineng.2019.105938.
  • Resende, L. V. and Morais, C. A. (2010). Study of the recovery of rare earth elements from computer monitor scraps-leaching experiments. Minerals Engineering, 23, 277-280. https://doi.org/10.1016/j.mineng.2009.12.012.
  • Rosenblum, S. and Brownfield, I. K. (1999). Magnetic Susceptibilities of Minerals. Erişim adresi https://pubs.usgs.gov/of/1999/ofr-99- 0529/MAGRPTfinal.pdf
  • Sadri, F., Nazari, A. M. and Ghahreman, A. (2017). A review on the cracking, baking and leaching processes of rare earth element concentrates. Journal of Rare Earths, 35(8), 739-752. https://doi.org/10.1016/S1002-0721(17)60971- 2.
  • Sagawa, M., Fujimura, S., Yamamoto, H. and Matsuura, Y. (1984). Permanent Magnet Materials Based on the Rare Earth Iron Boron Tetragonal Compounds. Journal of Applied Physics, 55(6), 2083-2087.
  • Shaw, K. G., Smutz, M. and Bridger, G. L. (1954). A process for separating thorium compounds from monazite sands. Springfield, VA: U.S. Atomic Energy Commission Report ISC-407, National Technical Information Service.
  • Straka, P. and Žežulka, V. (2019). Linear structures of Nd-Fe-B magnets: Simulation, design and implementation in mineral processing-A review, Minerals Engineering, 143, 105900. https://doi.org/10.1016/j.mineng.2019.105900.
  • Svoboda, J. (2004). Magnetic Techniques for the Treatment of Materials. Dordrecht / Boston / London: Kluwer Academic Publishers.
  • Svoboda, J. and Fujita, T. (2003). Recent developments in magnetic methods of material separation. Minerals Engineering, 16, 785-792. https://doi.org/10.1016/S0892-6875(03)00212- 7.
  • Taggart, R. K., King, J. F., Hower, J. C. and Hsu-Kim, H. (2017). Rare earth element recovery from coal fly ash by roasting and leaching methods. Paper Presented at the World of Coal Ash (WOCA) Conference, Lexington, KY.
  • Tan, Q., Li, J. and Zeng, X. (2015). Rare Earth Elements Recovery from Waste Fluorescent Lamps: A Review. Critical Reviews in Environmental Science and Technology, 45, 749-776. https://doi.org/10.1080/10643389.2014.900240.
  • Topkaya, Y. and Akkurt, S. (1999). Acid Curing and Baking of Bastnaesite Ore and Concentrate, Materials Science Forum. Switzerland: Trans Tech Publications.
  • Tran, T. (1991). New Developments in the Processing of Rare Earths. International Conference on Rare Earth Minerals and Minerals for Electronic Uses (s. 337-353). Prince Songkla University, Hat Yai, TH.
  • Tumbaz, E. (2019). Kişisel Görüşme, Eng Mineral Separation Technologies.
  • U.S. Geological Survey, 2019. Rare Earth Elements in Coal and Coal Fly Ash, Fact Sheet 2019-3048. USGS (U.S. Geological Survey), (2016). Minerals yearbook. Erişim adresi http://minerals.usgs.gov/minerals/pubs/.
  • USGS (U.S. Geological Survey), 2020. Mineral Commodity Summaries 2020. Erişim adresi https://pubs.usgs.gov/periodicals/mcs2020/mcs2 020.pdf.
  • Vijayan, S., Melnyk, A. J., Singh, R. D. and Nuttall, K. (1989). Rare earths: their mining, processing, and growing industrial usage. Mining Engineering, 41, 13-8.
  • Yang, Y., Walton, A., Sheridan, R., Guth, K., Gauß, R., Gutfleisch, O., Buchert, M., Steenari, B.M., Gerven, T. V., Jones, P. T. and Binnemans, K. (2017). REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review Journal of Sustainable Metallurgy, 3, 122-149. https://doi.org/10.1007/s40831-016-0090-4.
  • Yıldız, N. (2016). Nadir toprak elementleri. Ankara: Dijital Yayın.
  • Yoshida, T., Ono, H. and Shirai, R. (1995). Recycling of used Ni-MH rechargeable batteries, Minerals, Metals & Materials Society, 145-152.
  • Žežulka, V., Straka, P. and Mucha, P. (2005). The permanent NdFeB magnets in the circuits for magnetic filters and the first technological tests. International Journal of Mineral Processing, 78, 31-39. https://doi.org/10.1016/j.minpro.2005.07.004.
  • Zhang, G., Luo, D., Deng, C., Lv, L., Liang, B. and Li, C. (2018). Simultaneous extraction of vanadium and titanium from vanadium slag using ammonium sulfate roasting-leaching process. Journal of Alloys and Compounds, 742, 504-511. https://doi.org/10.1016/j.jallcom.2018.01.300.
  • Zhang, J. and Edwards, C. (2012). A review of rare earth mineral processing technology. 44th Annual Meeting of the Canadian Mineral Processors (s. 79-102). CIM, Ottawa.
  • Zhang, P. W., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T. M. and Inoue, K. (1998). Hydrometallurgical process for recovery of metal values from spent nickel metal hydride secondary batteries. Hydrometallurgy, 50, 61-75. https://doi.org/10.1016/S0304-386X(98)00046- 2.
  • Zhang, P. W., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T. M. and Inoue, K. (1999). Recovery of metal values from spent nickel-metal hydride rechargeable batteries. Journal of Power Sources, 77, 116-122. https://doi.org/10.1016/S0378-7753(98)00182- 7.
  • Zhu, Z., Pranolo, Y. and Cheng, C. Y. (2015). Separation of uranium and thorium from rare earths for rare earth production-a review. Minerals Engineering, 77, 185-196. https://doi.org/10.1016/j.mineng.2015.03.012
APA CELEP O, Yazici E, DEVECİ H (2021). Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. , 264 - 280. 10.17714/gumusfenbil.765981
Chicago CELEP Oktay,Yazici Ersin Y.,DEVECİ Hacı Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. (2021): 264 - 280. 10.17714/gumusfenbil.765981
MLA CELEP Oktay,Yazici Ersin Y.,DEVECİ Hacı Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. , 2021, ss.264 - 280. 10.17714/gumusfenbil.765981
AMA CELEP O,Yazici E,DEVECİ H Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. . 2021; 264 - 280. 10.17714/gumusfenbil.765981
Vancouver CELEP O,Yazici E,DEVECİ H Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. . 2021; 264 - 280. 10.17714/gumusfenbil.765981
IEEE CELEP O,Yazici E,DEVECİ H "Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi." , ss.264 - 280, 2021. 10.17714/gumusfenbil.765981
ISNAD CELEP, Oktay vd. "Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi". (2021), 264-280. https://doi.org/10.17714/gumusfenbil.765981
APA CELEP O, Yazici E, DEVECİ H (2021). Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 264 - 280. 10.17714/gumusfenbil.765981
Chicago CELEP Oktay,Yazici Ersin Y.,DEVECİ Hacı Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi 11, no.1 (2021): 264 - 280. 10.17714/gumusfenbil.765981
MLA CELEP Oktay,Yazici Ersin Y.,DEVECİ Hacı Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.11, no.1, 2021, ss.264 - 280. 10.17714/gumusfenbil.765981
AMA CELEP O,Yazici E,DEVECİ H Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2021; 11(1): 264 - 280. 10.17714/gumusfenbil.765981
Vancouver CELEP O,Yazici E,DEVECİ H Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi. 2021; 11(1): 264 - 280. 10.17714/gumusfenbil.765981
IEEE CELEP O,Yazici E,DEVECİ H "Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi." Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11, ss.264 - 280, 2021. 10.17714/gumusfenbil.765981
ISNAD CELEP, Oktay vd. "Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi". Gümüşhane Üniversitesi Fen Bilimleri Dergisi 11/1 (2021), 264-280. https://doi.org/10.17714/gumusfenbil.765981