Yıl: 2020 Cilt: 9 Sayı: 2 Sayfa Aralığı: 1077 - 1089 Metin Dili: Türkçe DOI: 10.28948/ngumuh.600588 İndeks Tarihi: 04-06-2021

ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME

Öz:
Robotik işleme yönteminde kullanılan robotlar hareket tiplerine göre seri ve paralel kinematik tip olmak üzere iki başlıkta incelenebilir. Bu çalışmada robotik işleme yönteminin geliştirilerek verimliliğinin arttırılması için literatürde yapılmış olan çalışmalar özetlenmiştir. Paralel kinematik robotlarda düşük çalışma alanına sahip olmasından dolayı işlemin yerinde yapılması ve konumlandırma (kalibrasyonun) hassas bir şekilde için geliştirilen bazı yöntemler bu derlemede sunulmuştur. Seri kinematikrobotlarda ise düşük dayanımlarından dolayı tırlama problemi ön plana çıkmakta olup tırlamanın engellenmesi üzerine yapılan çalışmalar yine bu derlemede sunulmaktadır. Robotik işleme uygulamalarında seri kinematik robotların inceleme sahasının paralel kinematik robotlara göre daha geniş olduğu gözlemlenmiştir. Hexapod tip robotların paralel kinematik robotlar içinde en çok kullanılan robot tipi olduğu gözlemlenmiştir. Bununla birlikte tırlamaların önlenmesi için temassız işleme yöntemlerinin robot kollara adaptasyonu son yıllarda uygulanmaya başlanmıştır.
Anahtar Kelime:

A REVIEW ON ROBOTIC MACHINING

Öz:
Robots used in robotic machining can be classified in two main titles as serial and parallel kinetic types due to the movementmethod. This study summarizes the works related to improve the productivity of the robotic machining. Due to the limitedworking space in parallel kinematic robots, the developed methods for performing in situ operation and precise positioning(calibration) are presented in this review. Chattering due to low stiffness of the serial kinematic robots is the most encounteredproblem therefore this study also presents the works related to prevent this problem. In robotic machining applications, it hasbeen observed that the field of study of serial kinematic robots is wider than the parallel kinematic robots. Hexapods are the mostused robot type in the parallel kinematic robots. In addition, the adaptation of non-contact machining methods to robots has beenintroduced in recent years to prevent the chatter.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] S. Zivanovic, N. Slavkovic, and D. Milutinovic, “An approach for applying STEP-NC in robot machining,” Robot. Comput. Integr. Manuf., vol. 49, no. July 2016, pp. 361–373, 2018.
  • [2] C. Sunguray, S. Urgun, H. Demirtas, and S. Gungor, “Design, Modelling And Simulation Of Position Controlled 6x6 Degree Of Freedom Stewart Platform,” SDÜ Int. Technol. Sci., vol. 6, no. 3, pp. 49–61, 2014.
  • [3] F. Xie, X. Liu, H. Zhang, and J. Wang, “Design and experimental study of the SPKM165, a five-axis serial-parallel kinematic milling machine,” Sci. China Technol. Sci., vol. 54, no. 5, pp. 1193–1205, 2011.
  • [4] X. D. Ren, Z. R. Feng, and C. P. Su, “A new calibration method for parallel kinematics machine tools using orientation constraint,” Int. J. Mach. Tools Manuf., vol. 49, pp. 708–721, 2009.
  • [5] M. Geldart, P. Webb, H. Larsson, M. Backstrom, N. Gindy, and K. Rask, “A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools,” Int. J. Mach. Tools Manuf., vol. 43, pp. 1107–1116, 2003.
  • [6] R. Fu, Y. Jin, L. Yang, D. Sun, A. Murphy, and C. Higgins, “Review on Structure-Based Errors of Parallel Kinematic Machines in Comparison with Traditional NC Machines,” Commun. Comput. Inf. Sci., vol. 923, pp. 249–256, 2018.
  • [7] A. J. Wavering, “Parallel kinematic machine research at NIST: past, present, and future,” Adv. Manuf., pp. 17–31, 1999.
  • [8] R. Ramesh, M. A. Mannan, and A. N. Poo, “Error compensation in machine tools - a review. Part I: Geometric, cuttingforce induced and fixture-dependent errors,” Int. J. Mach. Tools Manuf., vol. 40, pp. 1235–1256, 2000.
  • [9] R. G. Landers, B. M, and Y. Koren, “Reconfigurable Machine Tools,” CIRP Ann. - Manuf. Technol., vol. 50, no. 1, pp. 269–274, 2001.
  • [10] Y. Pan and F. Gao, “A new six-parallel-legged walking robot for drilling holes on the fuselage,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 228, no. 4, pp. 753–764, May 2013.
  • [11] J. A. Soons, “Error analysis of a hexapod machine tool,” Trans. Eng. Sci., vol. 16, pp. 347–358, 1997.
  • [12] Y. Shneor and V. T. Portman, “Stiffness of 5-axis machines with serial, parallel, and hybrid kinematics: Evaluation and comparison,” CIRP Ann. - Manuf. Technol., vol. 59, pp. 409–412, 2010.
  • [13] M. Agheli and M. Nategh, “Identifying the kinematic parameters of hexapod machine tool,” World Acad. Sci. Eng. Technol., vol. 3, no. 4, pp. 392–397, 2009.
  • [14] M. J. Nategh and M. M. Agheli, “A total solution to kinematic calibration of hexapod machine tools with a minimum number of measurement configurations and superior accuracies,” Int. J. Mach. Tools Manuf., vol. 49, no. 15, pp. 1155– 1164, 2009.
  • [15] T. Li, F. Li, Y. Jiang, J. Zhang, and H. Wang, “Kinematic calibration of a 3-P(Pa)S parallel-type spindle head considering the thermal error,” Mechatronics, vol. 43, pp. 86–98, 2017.
  • [16] T. Sun, Y. Zhai, Y. Song, and J. Zhang, “Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker,” Robot. Comput. Integr. Manuf., vol. 41, pp. 78–91, 2016.
  • [17] C. Fan, G. Zhao, J. Zhao, L. Zhang, and L. Sun, “Calibration of a parallel mechanism in a serial-parallel polishing machine tool based on genetic algorithm,” Int. J. Adv. Manuf. Technol., vol. 81, pp. 27–37, 2015.
  • [18] D. A. Axinte, J. M. Allen, R. Anderson, I. Dane, L. Uriarte, and A. Olara, “Free-leg Hexapod: A novel approach of using parallel kinematic platforms for developing miniature machine tools for special purpose operations,” CIRP Ann. - Manuf. Technol., vol. 60, pp. 395–398, 2011.
  • [19] N. Ma et al., “Parametric vibration analysis and validation for a novel portable hexapod machine tool attached to surfaces with unequal stiffness,” J. Manuf. Process., vol. 47, no. October, pp. 192–201, 2019.
  • [20] A. Olarra, D. Axinte, L. Uriarte, and R. Bueno, “Machining with the WalkingHex: A walking parallel kinematic machine tool for in situ operations,” CIRP Ann. - Manuf. Technol., vol. 66, no. 1, pp. 361–364, 2017.
  • [21] A. Olarra, D. Axinte, and G. Kortaberria, “Geometrical calibration and uncertainty estimation methodology for a novel self-propelled miniature robotic machine tool,” Robot. Comput. Integr. Manuf., vol. 49, no. July 2017, pp. 204–214, 2018.
  • [22] H. Wu, H. Handroos, P. Pessi, J. Kilkki, and L. Jones, “Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel,” Fusion Eng. Des., vol. 75–79, no. SUPPL., pp. 625– 631, 2005.
  • [23] P. Pessi, H. Wu, H. Handroos, and L. Jones, “A mobile robot with parallel kinematics to meet the requirements for assembling and machining the ITER vacuum vessel,” Fusion Eng. Des., vol. 82, no. 15–24, pp. 2047–2054, 2007.
  • [24] L. T. Tunc and J. Shaw, “Investigation of the effects of Stewart platform-type industrial robot on stability of robotic milling,” Int. J. Adv. Manuf. Technol., vol. 87, no. 1–4, pp. 189–199, 2016.
  • [25] L. T. Tunc and D. Stoddart, “Tool path pattern and feed direction selection in robotic milling for increased chatter-free material removal rate,” Int. J. Adv. Manuf. Technol., vol. 89, no. 9–12, pp. 2907–2918, 2017.
  • [26] J. D. Barnfather, M. J. Goodfellow, and T. Abram, “Achievable tolerances in robotic feature machining operations using a low-cost hexapod,” Int. J. Adv. Manuf. Technol., vol. 95, no. 1–4, pp. 1421–1436, 2018.
  • [27] E. Uguroglu, “6 Serbestlik Dereceli Rotasyonel Stewart Platformu Tasarımı Ve Yüzey Pürüzlülük Ölçümlerinde Eğim Sensörü İle Konum Kontrolü,” İstanbul Technical University, 2015.
  • [28] F. Gok, “The Analysis of the Effect of Cutting Tools Material to Chatter Vibrations in Turning Operations,” Eskisehir Osmangazi University, 2015.
  • [29] S. Neseli and S. Yaldiz, “The Effects of Approach Angle and Rake Angle Due to Chatter Vibrations on Surface Roughness in Turning,” J. Polytech., vol. 10, no. 4, pp. 383–389, 2007.
  • [30] S. A. Tobias and W. Fishwick, “The chatter of lathe tools under orthogonal cutting conditions,” Trans. ASME, vol. 80, pp. 1079–1088, 1958.
  • [31] J. Tlusty and M. Polacek, “The stability of machine tools against self excited vibrations in machining,” Int. Res. Prod. Eng., ASME, pp. 465–474, 1963.
  • [32] W. Pan, H. Zhang, Z. Zhu, and J. Wang, “Chatter analysis of robotic machining process,” J. Mater. Process. Technol., vol. 173, pp. 301–309, 2006.
  • [33] S. Seguy, L. Arnaud, and T. Insperger, “Chatter in interrupted turning with geometrical defects: an industrial case study,” Int. J. Adv. Manuf. Technol., vol. 75, no. 1–4, pp. 45–56, 2014.
  • [34] B. Denkena, B. Bergmann, and T. Lepper, “Design and optimization of a machining robot,” Procedia Manuf., vol. 14, pp. 89–96, 2017.
  • [35] K. B. Kaldestad, I. Tyapin, and G. Hovland, “Robotic face milling path correction and vibration reduction,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2015, pp. 543–548.
  • [36] J. Radojicic, D. Surdilovic, and G. Schreck, “Modular Hybrid Robots for Safe Human-Robot Interaction,” Int. J. World Acad. Sci. Eng. Technol., vol. 3, no. 12, pp. 1601–1607, 2009.
  • [37] D. Surdilovic, R. Bernhardt, and L. Zhang, “New intelligent power-assist systems based on differential transmission,” Robotica, vol. 21, no. 3, pp. 295–302, Jun. 2003.
  • [38] I. Tyapin, G. Hovland, P. Kosonen, and T. Linna, “Identification of a static tool force model for robotic face milling,” in 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2014, pp. 1–6.
  • [39] A. Brunete et al., “Hard material small-batch industrial machining robot,” Robot. Comput. Integr. Manuf., vol. 54, no. March 2017, pp. 185–199, 2018.
  • [40] M. Vukobratovic, Dynamics and robust control of robot-environment interaction, vol. 2. Singapore: World Scientific, 2009.
  • [41] J. M. Ahola, J. Koskinen, T. Seppälä, and T. Heikkilä, “Development of Impedance Control for Human/Robot Interactive Handling of Heavy Parts and Loads,” in ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, 2015.
  • [42] M. Terrier, A. Dugas, and J. Y. Hascoët, “Qualification of parallel kinematics machines in high-speed milling on free form surfaces,” Int. J. Mach. Tools Manuf., vol. 44, pp. 865–877, 2004.
  • [43] O. Sornmo, B. Olofsson, U. Schneider, A. Robertsson, and R. Johansson, “Increasing the milling accuracy for industrial robots using a piezo-actuated high-dynamic micro manipulator,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2012, pp. 104–110.
  • [44] Z. P. Z. Pan and H. Z. H. Zhang, “Improving robotic machining accuracy by real-time compensation,” in 2009 Iccas Sice International Joint Conference, 2009, pp. 4289–4294.
  • [45] C. Schindlbeck, A. Janz, C. Pape, and E. Reithmeier, “Increasing milling precision for macro-micro-manipulators with disturbance rejection control via visual feedback,” in IEEE International Conference on Intelligent Robots and Systems, 2017, vol. 2017-Septe, pp. 4686–4693.
  • [46] Y. Bu, W. Liao, W. Tian, J. Zhang, and L. Zhang, “Stiffness analysis and optimization in robotic drilling application,” Precis. Eng., vol. 49, pp. 388–400, 2017.
  • [47] C. Chen et al., “Stiffness performance index based posture and feed orientation optimization in robotic milling process,” Robot. Comput. Integr. Manuf., vol. 55, pp. 29–40, 2019.
  • [48] X. Zhang, H. Chen, J. Xu, X. Song, J. Wang, and X. Chen, “A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine,” J. Mater. Process. Technol., vol. 260, pp. 9– 19, 2018.
  • [49] M. Cordes, W. Hintze, and Y. Altintas, “Chatter stability in robotic milling,” Robot. Comput. Integr. Manuf., vol. 55, pp. 11–18, 2019.
  • [50] L. Yuan, S. Sun, Z. Pan, D. Ding, O. Gienke, and W. Li, “Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber,” Mech. Syst. Signal Process., vol. 117, pp. 221–237, 2019.
  • [51] L. Sun, K. Zheng, W. Liao, J. Liu, J. Feng, and S. Dong, “Investigation on chatter stability of robotic rotary ultrasonic milling,” Robot. Comput. Integr. Manuf., vol. 63, p. 101911, 2020.
  • [52] Y. Liu and F. He, “Study on the chatter steability of robotic milling based on the probability method,” J. Northeast. Univ., vol. 40, pp. 683–687, 2019.
  • [53] Y. Liu and F. He, “Research on the influencing factors of robot milling stability,” J. Northeast. Univ., vol. 40, pp. 991– 996, 2019.
  • [54] Y. Mohammadi and K. Ahmadi, “Effect of axial vibrations on regenerative chatter in robotic milling,” Procedia CIRP, vol. 82, pp. 503–508, 2019.
  • [55] L. Cen and S. N. Melkote, “Effect of Robot Dynamics on the Machining Forces in Robotic Milling,” in Procedia Manufacturing, 2017, vol. 10, pp. 486–496.
  • [56] L. Cen and S. N. Melkote, “CCT-based mode coupling chatter avoidance in robotic milling,” J. Manuf. Process., vol. 29, pp. 50–61, 2017.
  • [57] A. E. K. Mohammad, J. Hong, D. Wang, and Y. Guan, “Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications,” Robot. Comput. Integr. Manuf., vol. 55, no. July 2018, pp. 65–75, 2019.
  • [58] J. M. Zhan, J. Zhao, S. X. Xu, and P. X. Zhu, “Study of the contact force in free-form-surfaces compliant EDM polishing by robot,” J. Mater. Process. Technol., vol. 129, pp. 186–189, 2002.
APA DEMİRTAŞ H (2020). ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. , 1077 - 1089. 10.28948/ngumuh.600588
Chicago DEMİRTAŞ Hasan ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. (2020): 1077 - 1089. 10.28948/ngumuh.600588
MLA DEMİRTAŞ Hasan ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. , 2020, ss.1077 - 1089. 10.28948/ngumuh.600588
AMA DEMİRTAŞ H ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. . 2020; 1077 - 1089. 10.28948/ngumuh.600588
Vancouver DEMİRTAŞ H ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. . 2020; 1077 - 1089. 10.28948/ngumuh.600588
IEEE DEMİRTAŞ H "ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME." , ss.1077 - 1089, 2020. 10.28948/ngumuh.600588
ISNAD DEMİRTAŞ, Hasan. "ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME". (2020), 1077-1089. https://doi.org/10.28948/ngumuh.600588
APA DEMİRTAŞ H (2020). ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1077 - 1089. 10.28948/ngumuh.600588
Chicago DEMİRTAŞ Hasan ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no.2 (2020): 1077 - 1089. 10.28948/ngumuh.600588
MLA DEMİRTAŞ Hasan ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.9, no.2, 2020, ss.1077 - 1089. 10.28948/ngumuh.600588
AMA DEMİRTAŞ H ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2020; 9(2): 1077 - 1089. 10.28948/ngumuh.600588
Vancouver DEMİRTAŞ H ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2020; 9(2): 1077 - 1089. 10.28948/ngumuh.600588
IEEE DEMİRTAŞ H "ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME." Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9, ss.1077 - 1089, 2020. 10.28948/ngumuh.600588
ISNAD DEMİRTAŞ, Hasan. "ROBOTİK İŞLEME YÖNTEMİ ÜZERİNE BİR DERLEME". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (2020), 1077-1089. https://doi.org/10.28948/ngumuh.600588