Yıl: 2020 Cilt: 9 Sayı: 2 Sayfa Aralığı: 1118 - 1128 Metin Dili: Türkçe DOI: 10.28948/ngmuh.632128 İndeks Tarihi: 04-06-2021

SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ

Öz:
Al–6.5Ni–1.5Fe (ağ.) ötektik bileşiminde hazırlanan alaşım sabit katılaştırma hızında (V = 16.57 µm/s) ve beş farklı sıcaklık gradyentinde (G = 3.23–8.52 K/mm) Bridgman Tipi fırın yardımıyla kontrollü doğrusal katılaştırılarak sıcaklık gradyentinin (G) alaşımın mikroyapı (λ) ve mikrosertlik (HV) özelliklerine etkisi araştırılmıştır. Yapılan deneyler sonucunda oluşan mikroyapılar arası mesafe ve mikrosertlik değerleri ölçülerek sıcaklık gradyentinin mikroyapı ve mikrosertlik üzerine etkisi ortaya çıkarılmıştır. Bu fiziksel özellikler arasındaki ilişki ise lineer regresyon analizi ile belirlenerek benzer deneysel sonuçlarla elde edilen veriler kıyaslanmıştır.
Anahtar Kelime:

THE EFFECT OF TEMPERATURE GRADIENT ON MICROSTRUCTURE AND MICROHARDNESS

Öz:
Al–6.5Ni–1.5Fe (wt.) alloy was directionally solidified upward at a constant growth rate (V = 16.57 µm/s) and with five differenttemperature gradients (G = 3.23–8.52 K/mm) by using a Bridgman type directional solidification furnace. In this way it wasinvestigated effect of temperature gradient (G) on microstructure (λ) and microhardness (HV). The distance betweenmicrostructures and microhardness values were measured and the effect of temperature gradient on microstructure andmicrohardness was determined. The relationship between physical properties was determined by linear regression analysis andwith the data obtained similar experimental results were compared.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. Gündüz, H. Kaya, E. Çadırlı, N. Maraşlı, K. Keslioglu, B. Saatci, “Effect of solidification Processing parameters on the cellular spacings in the Al–0.1 wt% Ti and Al–0.5 wt% Ti alloys”, Journal of Alloys and Compounds, vol. 439, no. 1–2, pp.114–127, 2007.
  • [2] H. Kaya, E. Çadırlı, U. Böyük, N. Maraşlı, “Investigation of directional solidified Al–Ti alloy”. Journal of Non– Crystallıne Solids, vol.355 no. 22–23, pp. 1231–1239, 2009.
  • [3] H. Kaya, M. Gündüz, E. Çadırlı, N. Maraşlı, “Dependency of microindentation hardness on solidification Processing parameters and cellular spacing in the directionally solidified Al based alloys.” Journal of Alloys and Compounds, vol. 478 no. 1–2, pp. 281–286, 2009.
  • [4] H. Kaya, U. Böyük, E. Çadırlı, N. Maraşlı, “Unidirectional solidification of aluminium–nickel eutectic alloy.” Kovove Materıaly–Metallic Materials, vol. 48–5, pp. 291–300, 2010.
  • [5] H. Kaya, U. Böyük, E. Çadırlı, N. Maraşlı, “Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy.” Materials & Design, vol. 34, pp. 707–712, 2012.
  • [6] E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraşlı, K. Keslioglu, A. Ulgen, “Investigation of the effect of solidification Processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy.” Journal of Materials Science–Materials in Electronics, vol. 21, no.6, pp. 608–618, 2010.
  • [7] E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N.Maraşlı, M. Arı, “Investigation of microhardness and thermo–electrical properties in the Sn–Cu hypereutectic alloy.” Journal of Materials Science–Materials in Electronics, vol. 21, no. 5, pp. 468–474, 2010.
  • [8] E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraşlı, A. Ülgen, “Experimental investigation of the effect of solidification Processing parameters on the rod spacings in the Sn–1.2 wt.% Cu alloy.” Journal of Alloys and Compounds, vol. 486, no.1–2, pp. 199–206, 2009.
  • [9] H. Kaya, U. Böyük, S. Engin, E. Çadırlı, N. Maraşlı, “Measurements of Microhardness and Thermal and Electrical Properties of the Binary Zn–0.7wt.%Cu Hypoperitectic Alloy.” Journal of Electronıc Materials, vol. 39, no.3, pp. 303– 311, 2010.
  • [10] U. Böyük, H. Kaya, E. Çadırlı, N. Maraşlı, A. Ülgen, “Investigation of the effect of solidification Processing parameters on microhardness and determination of thermo–physical properties in the Zn–Cu peritectic alloy.” Journal of Alloys and Compounds, vol. 491, no. 1–2, pp. 143–148, 2010.
  • [11] U. Böyük, S. Engin, H. Kaya, E. Çadırlı, N. Maraşlı, K. Keslioglu, “A study of microstructure and solidification behaviour of Zn–Cu alloy.” Kovove Materıaly–Metallic Materials, vol. 48, no. 2, pp. 117–126, 2010.
  • [12] U. Böyük, S. Engin, N. Maraşlı, “Microstructural Characterization of unidirectional solidified eutectic Al–Si–Ni alloy.” Materials Characterization, vol. 62, no. 9, pp. 844–851, 2011.
  • [13] U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, K. Keslioglu, “Directional solidification of Al–Cu–Ag alloy.” Applied Physics A–Materials Science & Processing, vol. 95, no. 3, pp. 923–932, 2009.
  • [14] U. Böyük, N. Maraşlı, E. Çadırlı, H. Kaya, K. Keslioglu, “Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy.” Current Applied Physics, vol. 12, no. 1, pp. 7– 10, 2012.
  • [15] U. Böyük, S. Engin, N. Maraşlı, “Dırectıonal Solıdıfıcatıon Of Zn–Al–Cu Eutectıc Alloy By The Vertıcal Brıdgman Method.” Journal of Mining and Metallurgy Sectıon B–Metallurgy, vol. 51 no. 1, pp. 67–72, 2015.
  • [16] U, Böyük, N. Maraşlı, “The microstructure parameters and microhardness of directionally solidified Sn–Ag–Cu eutectic alloy,” Journal of Alloys and Compounds, 485 (1–2), 264–269, 2009.
  • [17] U. Böyük, N. Maraşlı, “Dependency of eutectic spacings and microhardness on the temperature gradient for directionally solidified Sn–Ag–Cu lead–free solder.” Materials Chemistry And Physics, vol. 119, no. 3, pp. 442–448, 2010.
  • [18] U. Böyük, S. Engin, N. Maraşlı, H.Kaya, “Effect of solidification parameters on the microstructure of Sn–3.7Ag–0.9Zn solder.” Materials Characterization, vol. 61, no. 11, pp. 1260–1267, 2010.
  • [19] E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, “Determination of mechanical, electrical and thermal properties of the Sn– Bi–Zn ternary alloy.” Journal of Non–Crystalline Solids, vol. 357, no. 15, pp. 2876–2881, 2010.
  • [20] H. Kaya, U. Böyük, E. Çadırlı, Y. Ocak, S. Akbulut, K. Keslioglu, “Dependency of Microstructural Parameters and Microindentation Hardness on the Temperature Gradient in the In–Bi–Sn Ternary Alloy with a Low Melting Point.” Metals And Materials International, vol. 14, no. 5, pp. 575–582, 2008.
  • [21] H. Kaya, E. Çadırlı, M. Gündüz, “Eutectic growth of unidirectionally solidified bismuth–cadmium alloy.” Journal of Materials Processing Technology, vol. 183, no. 2–3, pp. 310–320, 2007.
  • [22] U. Hecht, L. Granasy, T. Pusztai, B. Bottger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S. G. Fries, B. Legendre, S. Rex, “Multiphase solidification in multicomponent alloys.” Materials Science and Engineering R, vol. 46, pp. 1–49, 2004.
  • [23] M. L. Mondolfo, “Aluminium alloys: structure and properties.” Butterworths, London, 1979.
  • [24] R. M. K. Young, T. W. Clyne, “An Al–Fe intermetallic phase formed during controlled solidification.” Scr. Metall. vol. 15, pp. 1211–1216, 1981.
  • [25] P.R. Goulart, K. S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, “Cellular growth during transient directional solidification of hypoeutectic Al–Fe alloys” Journal of Alloys and Compounds, vol. 470, no. 1–2, pp. 589, 2009.
  • [26] S. Engin, “Kontrollü Katılaştırılan Çok Bileşenli Ötektik Alaşımların, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Parametrelerine Bağlılığının İncelenmesi.” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği, Kayseri 2013.
  • [27] E. Çadırlı, “İkili Metalik Alaşımların Doğrusal Katılaştırılması.” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği Kayseri 1997.
  • [28] U. Böyük, “Üçlü Metalik Alaşımların Kontrollü Doğrusal Katılaştırılması ve Mikrosertliğinin İncelenmesi.” Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği Kayseri 2009.
  • [29] B. Drevet, D. Camel, M. Dupuy, J. J. Favier, “Microstructure of the Sn–Cu6Sn5 fibrous eutectic and its modification by segregation.” Acta Mater. vol. 44, pp. 4071–4084, 1996.
  • [30] K. A. Jackson, J.D. Hunt, “Lamellar and Rod Eutectic Growth.” Trans. Metall. Soc. A.I.M.E. vol. 236, pp.1129, 1966.
APA Engin S, Büyük U, Maraşlı N (2020). SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. , 1118 - 1128. 10.28948/ngmuh.632128
Chicago Engin Sevda,Büyük Uğur,Maraşlı Necmettin SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. (2020): 1118 - 1128. 10.28948/ngmuh.632128
MLA Engin Sevda,Büyük Uğur,Maraşlı Necmettin SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. , 2020, ss.1118 - 1128. 10.28948/ngmuh.632128
AMA Engin S,Büyük U,Maraşlı N SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. . 2020; 1118 - 1128. 10.28948/ngmuh.632128
Vancouver Engin S,Büyük U,Maraşlı N SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. . 2020; 1118 - 1128. 10.28948/ngmuh.632128
IEEE Engin S,Büyük U,Maraşlı N "SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ." , ss.1118 - 1128, 2020. 10.28948/ngmuh.632128
ISNAD Engin, Sevda vd. "SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ". (2020), 1118-1128. https://doi.org/10.28948/ngmuh.632128
APA Engin S, Büyük U, Maraşlı N (2020). SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1118 - 1128. 10.28948/ngmuh.632128
Chicago Engin Sevda,Büyük Uğur,Maraşlı Necmettin SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no.2 (2020): 1118 - 1128. 10.28948/ngmuh.632128
MLA Engin Sevda,Büyük Uğur,Maraşlı Necmettin SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.9, no.2, 2020, ss.1118 - 1128. 10.28948/ngmuh.632128
AMA Engin S,Büyük U,Maraşlı N SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2020; 9(2): 1118 - 1128. 10.28948/ngmuh.632128
Vancouver Engin S,Büyük U,Maraşlı N SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2020; 9(2): 1118 - 1128. 10.28948/ngmuh.632128
IEEE Engin S,Büyük U,Maraşlı N "SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ." Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9, ss.1118 - 1128, 2020. 10.28948/ngmuh.632128
ISNAD Engin, Sevda vd. "SICAKLIK GRADYENTİNİN MİKROYAPI VE MİKROSERTLİĞE ETKİSİ". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (2020), 1118-1128. https://doi.org/10.28948/ngmuh.632128