Yıl: 2021 Cilt: 4 Sayı: 1 Sayfa Aralığı: 42 - 49 Metin Dili: İngilizce DOI: 10.14744/ijmb.2020.83007 İndeks Tarihi: 05-06-2021

A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients

Öz:
Objectives: The aim of this study was to investigate the effect of chemical changes in the follicular fluid and histological changes in the cumulus cells of the oocyte microenvironment on the number of oocytes in infertile patients.Methods: A total of 50 female patients aged 18-35 who presented at the Atatürk University Research Hospital Infertility Clinic and for infertility treatment were included. The patients were divided into 3 groups: Patients with fewerthan 5 oocytes were classified as Group 1, patients with 5-20 oocytes comprised Group 2, and Group 3 was made upof patients with >20 oocytes. During the oocyte collection process, follicular fluid was aspirated from the follicles andthe cumulus cells were collected. The follicular fluid was stored at -80°C for use in biochemical analysis of malondialdehyde (MDA), total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH).Immunohistochemical staining was performed to examine caspase-3 and mechanistic target of rapamycin (mTOR)immunoreactivity at the stereological level.Results: The MDA level and total oxidant capacity (TOC) in the follicular fluid were higher in Group 1 patients than inthe other 2 groups, while the SOD was lower (p<0.05). In Group 2 patients, the MDA level and TOS were higher thanthose of Group 3, while the SOD level was lower (p<0.05). The total antioxidant capacity (TAC) and GSH levels did notvary significantly according to the number of oocytes (p<0.05). Immunohistochemical staining showed that mTOR andcaspase-3 immunoreactivity were more intense in Group 1 than in the other groups.Conclusion: The increase in mTOR expression may activate the caspase-3 pathway, which could lead to oxidativestress. The mTOR pathway may affect the oocyte count
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kamyabi Z, Gholamalizade T. A Comparative Study of Serum and Follicular Fluid Leptin Concentrations among Explained Infertile, Unexplained Infertile and Fertile Women. Int J Fertil Steril 2015;9(2):150–6.
  • 2. Templeton A, Morris JK, Parslow W. Factors that affect outcome of in-vitro fertilisation treatment. Lancet 1996;348(9039):1402–6. [CrossRef]
  • 3. Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007;18(9):567–79. [CrossRef]
  • 4. Jancar N, Kopitar AN, Ihan A, Virant Klun I, Bokal EV. Effect of apoptosis and reactive oxygen species production in human granulosa cells on oocyte fertilization and blastocyst development. J Assist Reprod Genet 2007;24(2-3):91–7. [CrossRef]
  • 5. Yalçınkaya E, Calışkan E, Budak O. In vitro maturation may prevent the cancellation of in vitro fertilization cycles in poor responder patients: A case report. J Turk Ger Gynecol Assoc 2013;14(4):235–7. [CrossRef]
  • 6. Borowiecka M, Wojsiat J, Polac I, Radwan M, Radwan P, Zbikowska HM. Oxidative stress markers in follicular fluid of women undergoing in vitro fertilization and embryo transfer. Syst Biol Reprod Med 2012;58(6):301–5. [CrossRef]
  • 7. McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human Reproduction 2004;19(12):2869–74. [CrossRef]
  • 8. Kansaku K, Itami N, Kawahara-Miki R, Shirasuna K, Kuwayama T, Iwata H. Differential effects of mitochondrial inhibitors on porcine granulosa cells and oocytes. Theriogenology 2017;103:98–103. [CrossRef]
  • 9. Wit AA, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. J Anim Sci 2000;78(5):1277– 83. [CrossRef]
  • 10. Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Assist Reprod Genet 2001;18(9):490–8. [CrossRef]
  • 11. Lee SE, Kim EY, Choi HY, Moon JJ, Park MJ, Lee JB, et al. Rapamycin rescues the poor developmental capacity of aged porcine oocytes. Asian-Australas J Anim Sci 2014;27(5):635– 47. [CrossRef]
  • 12. Yaba A, Demir N. The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovarian Res 2012;5(1):38. [CrossRef]
  • 13. Guo J, Shi L, Gong X, Jiang M, Yin Y, Zhang X, et al. Oocytedependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. Journal of Cell Science 2016;129:3091–103. [CrossRef]
  • 14. Mazzoletti M, Broggini M. PI3K/AKT/mTOR inhibitors in ovarian cancer. Curr Med Chem 2010;17(36):4433–47. [CrossRef]
  • 15. Brackett BG, Zuelke KA. Analysis of Factors Involved in the Invitro Production of Bovine Embryos. Theriogenology 1993;39(1):43–64. [CrossRef]
  • 16. Pekel A, Gönenç A, Turhan NÖ, Kafalı H. Changes of sFas and sFasL, oxidative stress markers in serum and follicular fluid of patients undergoing IVF. J Assist Reprod Genet 2015;32(2):233–41. [CrossRef]
  • 17. Lin D, Ran J, S Zhu, Quan S, Ye B, Yu A, et al. Effect of GOLPH3 on cumulus granulosa cell apoptosis and ICSI pregnancy outcomes. Scientific Reports 2017;7:7863. [CrossRef]
  • 18. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. Cumulus 2007;22(6):1506–12. [CrossRef]
  • 19. Lass A, Gerrard A, Abusheikha N, Akagbosu F, Brinsden P. IVF performance of women who have fluctuating early follicular FSH levels. J Assist Reprod Genet 2000;17(10):566–73. [CrossRef]
  • 20. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 2004;8(6):616–27. [CrossRef]
  • 21. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick AZ, Ishai D, et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril 2004;82:1171–6. [CrossRef]
  • 22. Cheeseman KH. Mechanisms and effects of lipid peroxidation. Mol Aspects Med 1993;14(3):1917. [CrossRef]
  • 23. Nasiri N, Moini A, Eftekhari-Yazdi P, Karimian L, Salman-Yazdi R, Arabipoor A. Oxidative Stress Statues in Serum and Follicular Fluid of Women with Endometriosis. Cell J 2017;18(4):582–7.
  • 24. Pasqualotto EB, Agarwal A, Sharma RK, Izzo VM, Pinotti JA, Joshi NJ, et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril 2004;81(4):973–6. [CrossRef]
  • 25. Szczepańska M, Koźlik J, Skrzypczak J, Mikołajczyk M. Oxidative stress may be a piece in the endometriosis puzzle. Fertil Steril 2003;79(6):1288–93. [CrossRef]
  • 26. Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, et al. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 2000;45(5):314–20.
  • 27. Karakaya C, Kavutcu M, Gumuslu S, Oktem M, Erdem A, Canbolat O. Evaluation of Follicular Fluid Antioxidant-Oxidant Status in High, Normo, and Poor Responder Patients Undergoing Assisted Reproductive Techniques. Fertility and Sterility 2011;96(3):S80. [CrossRef]
  • 28. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry 2004;37(2):112–9. [CrossRef]
  • 29. Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 2000;50(4-5):279–89. [CrossRef]
  • 30. Polak G, Rola R, Gogacz M, Kozioł-Montewka M, Kotarski J. Malonyldialdehyde and total antioxidant status in the peritoneal fluid of infertile women. [Article in Polish]. Ginekol Pol 1999;70(3):135–40.
  • 31. Oyawoye O, Abdel Gadir A, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod 2003;18(11):2270–4. [CrossRef]
  • 32. Carbone MC, Tatone C, Delle Monache S, Marci R, Caserta D, Colonna R, et al. Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Molecular Human Reproduction 2003;9(11):639–43. [CrossRef]
  • 33. Sies H. Role of Metabolic H2O2 Generation, Journal of Biological Chemistry 2014;289(13):8735–41. [CrossRef]
  • 34. Sato EF, Kobuchi H, Edashige K, Takahashi M, Yoshioka T, Utsumi K, et al. Dynamic aspects of ovarian superoxide dismutase isozymes during the ovulatory process in the rat. FEBSLett 1992;303(2-3):121–5. [CrossRef]
  • 35. Miyazaki T, Sueoka K, Dharmarajan AM, Atlas SJ, Bulkley GB, Wallach EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil 1991;91(1):207–12. [CrossRef]
  • 36. Sabatini L, Wilson C, Lower A, Al-Shawaf T, Grudzinskas JG. Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil Steril 1999;72(6):1027–34. [CrossRef]
  • 37. Jozwik M, Wolczynski S, Jozwik M, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans, Molecular Human Reproduction 1999;5(5):409–13. [CrossRef]
  • 38. Ebisch IM, Peters WHM, Thomas CMG, Wetzels AMM, Peer PGM, Steegers-Theunissen RPM. High homocysteine concentrations in the ejaculate and follicular fluid detrimentally affect embryo quality in couples participating in an IVF or ICSI procedure. Journal of the Society for Gynecologic Investigation 2006;13(2):150a.
  • 39. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 2008;14(2):159–77. [CrossRef]
  • 40. Greenberg LH1, Stouffer RL, Brenner RM, Molskness TA, HildPetito SA, Yu Q. Are Human Luteinizing Granulosa-Cells a Site of Action for Progesterone and Relaxin. Fertility and Sterility 1990;53(3);446–53. [CrossRef]
  • 41. Høst E, Gabrielsen A, Lindenberg S, Smidt-Jensen S. Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the correspond ing oocyte after intracytoplasmic sperm injection. Fertil Steril 2002;77(3):511–5. [CrossRef]
  • 42. Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitationand final maturation in cattle, Theriogenology 1997;47(1):23–32. [CrossRef]
  • 43. Jurisicova A, Varmuza S, Casper RF. Involvement of programmed cell death in preimplantation embryo demise. Hum Reprod Update 1995;1(6):558–66. [CrossRef]
  • 44. Bosco L, Ruvolo G, Morici G, Manno M, Cittadini E, Roccheri MC. Apoptosis in human unfertilized oocytes after intracytoplasmic sperm injection. Fertility and Sterility 2005;84(5):1417–23.
  • 45. Nakahara K, Saito H, Saito T, Ito M, Ohta N, Sakai N, et al. Incidence of apoptotic bodies in membrana granulosa of the patients participating in an in vitro fertilization program. Fertil Steril 1997;67(2):302–8. [CrossRef]
  • 46. Corn CM, Hauser-Kronberger C, Moser M, Tews G, Ebner T. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril 2005;84(3):627–33. [CrossRef]
  • 47. Garrett AP, Lee KR, Colitti CR, Muto MG, Berkowitz RS, Mok SC. k-ras mutation may be an early event in mucinous ovarian tumorigenesis. Int J Gynecol Pathol 2001;20(3):244–51. [CrossRef]
  • 48. Leconte M, Nicco C, Ngô C, Chéreau C, Chouzenoux S, Marut W, et al. The mTOR/AKT inhibitor temsirolimus prevents deep infiltrating endometriosis in mice. Am J Pathol 2011;179(2):880–9.
  • 49. Guo J, Zhang T, Guo Y, Sun T, Li H, et al. Oocyte stage-specific effects of mTOR determine granulosa cell fate and oocyte quality in mice. National Acad Sciences, 2018 ;115 :(23). [CrossRef]
  • 50. Jang BC, Paik JH, Kim SP, Shin DH, Song DK, Park JG, et al. Catalase induced expression of inflammatory mediators via activation of NF-kappaB, PI3K/AKT, p70S6K, and JNKs in BV2 microglia. Cell Signal 2005;17(5):625–33. [CrossRef]
APA akaras n, Demirci T, Ozgül Abuc O, HALICI M, Kasali K (2021). A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. , 42 - 49. 10.14744/ijmb.2020.83007
Chicago akaras nurhan,Demirci Tuba,Ozgül Abuc Ozlem,HALICI Mesut,Kasali Kamber A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. (2021): 42 - 49. 10.14744/ijmb.2020.83007
MLA akaras nurhan,Demirci Tuba,Ozgül Abuc Ozlem,HALICI Mesut,Kasali Kamber A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. , 2021, ss.42 - 49. 10.14744/ijmb.2020.83007
AMA akaras n,Demirci T,Ozgül Abuc O,HALICI M,Kasali K A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. . 2021; 42 - 49. 10.14744/ijmb.2020.83007
Vancouver akaras n,Demirci T,Ozgül Abuc O,HALICI M,Kasali K A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. . 2021; 42 - 49. 10.14744/ijmb.2020.83007
IEEE akaras n,Demirci T,Ozgül Abuc O,HALICI M,Kasali K "A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients." , ss.42 - 49, 2021. 10.14744/ijmb.2020.83007
ISNAD akaras, nurhan vd. "A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients". (2021), 42-49. https://doi.org/10.14744/ijmb.2020.83007
APA akaras n, Demirci T, Ozgül Abuc O, HALICI M, Kasali K (2021). A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. International Journal of Medical Biochemistry, 4(1), 42 - 49. 10.14744/ijmb.2020.83007
Chicago akaras nurhan,Demirci Tuba,Ozgül Abuc Ozlem,HALICI Mesut,Kasali Kamber A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. International Journal of Medical Biochemistry 4, no.1 (2021): 42 - 49. 10.14744/ijmb.2020.83007
MLA akaras nurhan,Demirci Tuba,Ozgül Abuc Ozlem,HALICI Mesut,Kasali Kamber A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. International Journal of Medical Biochemistry, vol.4, no.1, 2021, ss.42 - 49. 10.14744/ijmb.2020.83007
AMA akaras n,Demirci T,Ozgül Abuc O,HALICI M,Kasali K A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. International Journal of Medical Biochemistry. 2021; 4(1): 42 - 49. 10.14744/ijmb.2020.83007
Vancouver akaras n,Demirci T,Ozgül Abuc O,HALICI M,Kasali K A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients. International Journal of Medical Biochemistry. 2021; 4(1): 42 - 49. 10.14744/ijmb.2020.83007
IEEE akaras n,Demirci T,Ozgül Abuc O,HALICI M,Kasali K "A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients." International Journal of Medical Biochemistry, 4, ss.42 - 49, 2021. 10.14744/ijmb.2020.83007
ISNAD akaras, nurhan vd. "A histological and biochemical study of cumulus cells and the oocyte microenviroment in in vitro fertilization patients". International Journal of Medical Biochemistry 4/1 (2021), 42-49. https://doi.org/10.14744/ijmb.2020.83007