Yıl: 2021 Cilt: 32 Sayı: 1 Sayfa Aralığı: 267 - 273 Metin Dili: İngilizce DOI: 10.5606/ehc.2021.80360 İndeks Tarihi: 05-06-2021

Nanotechnology-based drug delivery systems in orthopedics

Öz:
In recent years, nanotechnology has led to significant scientific and technological advances in diverse fields, specifically within the field of medicine. Owing to the revolutionary implications in drug delivery, nanotechnology-based drug delivery systems have gained an increasing research interest in the current medical field. A variety of nanomaterials with unique physical, chemical and biological properties have been engineered to develop new drug delivery systems for the local, sustained and targeted delivery of drugs with improved therapeutic efficiency and less or no toxicity, representing a very promising approach for the effective management of diseases. The utility of nanotechnology, particularly in the field of orthopedics, is a topic of extensive research. Nanotechnology has a great potential to revolutionize treatment, diagnostics, and research in the field of orthopedics. Nanophase drug delivery has shown great promise in their ability to deliver drugs at nanoscale for a variety of orthopedic applications. In this review, we discuss recent advances in the field of nanostructured drug delivery systems for orthopedic applications.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Feynman RP. There's Plenty of Room at the Bottom. Engineering and Science 1960;23:22-36.
  • 2. Güven E. Lipid-based nanoparticles in the treatment of erectile dysfunction. Int J Impot Res 2020;32:578-86.
  • 3. Cacciatore FA, Brandelli A, Malheiros PDS. Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Crit Rev Food Sci Nutr 2020:1-12.
  • 4. Li C, Yan B. Opportunities and challenges of phytonanotechnology. Environmental Science: Nano 2020;7:2863-74.
  • 5. Al Mamun MA, Yuce MR. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv Funct Mater. 2020. ARTN 2005703.
  • 6. Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 2019;14:1335-46.
  • 7. Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nanosystems. Bioact Mater 2020;5:1071-86.
  • 8. Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol 2020;7:489.
  • 9. Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian- Robati R, Mokhtarzadeh A, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 2020;321:442-62.
  • 10. Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 2020;8:4109-28.
  • 11. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010;10:3223-30.
  • 12. Kavaz D, Odabas S, Guven E, Demirbilek M, Denkbas EB. Bleomycin Loaded Magnetic Chitosan Nanoparticles as Multifunctional Nanocarriers. Journal of Bioactive and Compatible Polymers 2010;25:305-18.
  • 13. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018;16:71.
  • 14. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater Sci Eng C Mater Biol Appl 2020;106:110154.
  • 15. Alp E, Çirak T, Demirbilek M, Türk M, Güven E. Targeted delivery of etoposide to osteosarcoma cells using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles. Turk J Biol 2017;41:719-33.
  • 16. Sun H, Lv L, Bai Y, Yang H, Zhou H, Li C, et al. Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int J Nanomedicine 2018;13:8325-38.
  • 17. Parizek M, Douglas TE, Novotna K, Kromka A, Brady MA, Renzing A, et al. Nanofibrous poly(lactide-coglycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine 2012;7:1931-51.
  • 18. Yun YH, Eteshola E, Bhattacharya A, Dong Z, Shim JS, Conforti L, et al. Tiny medicine: nanomaterial-based biosensors. Sensors (Basel) 2009;9:9275-99.
  • 19. Raina DB, Liu Y, Jacobson OLP, Tanner KE, Tagil M, Lidgren L. Bone mineral as a drug-seeking moiety and a waste dump a Review. Bone Joint Res 2020;9:709-18.
  • 20. Chen X, Zhu Q, Xu X, Shen S, Zhang Y, Mo R. Sequentially site-specific delivery of apoptotic protein and tumorsuppressor gene for combination cancer therapy. Small 2019;15:e1902998.
  • 21. Yang Y, Sun B, Zuo S, Li X, Zhou S, Li L, et al. Trisulfide bondmediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci Adv 2020;6:eabc1725.
  • 22. Zhou X, He X, Shi K, Yuan L, Yang Y, Liu Q, et al. Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC Therapy. Adv Sci (Weinh) 2020;7:2001442.
  • 23. Lu C, Han HD, Mangala LS, Ali-Fehmi R, Newton CS, Ozbun L, et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell 2010;18:185-97.
  • 24. Soiberman U, Kambhampati SP, Wu T, Mishra MK, Oh Y, Sharma R, et al. Subconjunctival injectable dendrimerdexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017;125:38-53.
  • 25. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond) 2010;5:1535-46.
  • 26. Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi- Kalisman Y, Shahar A, et al. Liposomes of quantum dots configured for passive and active delivery to tumor tissue. Nano Lett 2019;19:5844-52.
  • 27. Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerfaces 2020;194:111151.
  • 28. Jin T, Wu D, Liu XM, Xu JT, Ma BJ, Ji Y, et al. Intraarticular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. J Nanobiotechnology 2020;18:94.
  • 29. Mao Y, Zhao Y, Guan J, Guan J, Ye T, Chen Y, et al. Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opin Drug Deliv 2020;17:993-1005.
  • 30. Murthy A, Ravi PR, Kathuria H, Malekar S. Oral Bioavailability Enhancement of Raloxifene with Nanostructured Lipid Carriers. Nanomaterials (Basel) 2020;10:1085.
  • 31. Li K, Li D, Zhao L, Chang Y, Zhang Y, Cui Y, et al. Calciummineralized polypeptide nanoparticle for intracellular drug delivery in osteosarcoma chemotherapy. Bioact Mater 2020;5:721-31.
  • 32. Hassani Besheli N, Mottaghitalab F, Eslami M, Gholami M, Kundu SC, Kaplan DL, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces 2017;9:5128-38.
  • 33. Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol 2014;10:11-22.
  • 34. Rahmani Del Bakhshayesh A, Akbarzadeh A, Alihemmati A, Tayefi Nasrabadi H, Montaseri A, Davaran S, et al. Preparation and characterization of novel antiinflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Deliv 2020;27:269-82.
  • 35. Sacchetti C, Liu-Bryan R, Magrini A, Rosato N, Bottini N, Bottini M. Polyethylene-glycol-modified singlewalled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 2014;8:12280-91.
  • 36. McMasters J, Poh S, Lin JB, Panitch A. Delivery of anti-inflammatory peptides from hollow PEGylated poly(NIPAM) nanoparticles reduces inflammation in an ex vivo osteoarthritis model. J Control Release 2017;258:161-70.
  • 37. Yan Y, Sun T, Zhang H, Ji X, Sun Y, Zhao X, et al. Euryale ferox seed-inspired superlubricated nanoparticles for treatment of osteoarthritis. Advanced Functional Materials 2019;29:1807559.
  • 38. Lin JB, Poh S, Panitch A. Controlled release of antiinflammatory peptides from reducible thermosensitive nanoparticles suppresses cartilage inflammation. Nanomedicine 2016;12:2095-100.
  • 39. Maudens P, Seemayer CA, Thauvin C, Gabay C, Jordan O, Allémann E. Nanocrystal-polymer particles: Extended delivery carriers for osteoarthritis treatment. Small 2018;14.
  • 40. Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, et al. A stem cell-based approach to cartilage repair. Science 2012;336:717-21.
  • 41. Kang ML, Kim JE, Im GI. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater 2016;39:65-78.
  • 42. He T, Zhang C, Vedadghavami A, Mehta S, Clark HA, Porter RM, et al. Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs. J Control Release 2020;318:109-23.
  • 43. Bajpayee AG, Scheu M, Grodzinsky AJ, Porter RM. A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage. J Orthop Res 2015;33:660-7.
  • 44. Steckiewicz KP, Inkielewicz-Stepniak I. Modified nanoparticles as potential agents in bone diseases: Cancer and implant-related complications. Nanomaterials (Basel) 2020;10:658.
  • 45. Kılıçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB. Preparation and characterization of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 2011;44:310-20.
  • 46. Zhang Y, Wang F, Li M, Yu Z, Qi R, Ding J, et al. Erratum: Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci (Weinh) 2018;5:1800811.
  • 47. Au KM, Satterlee A, Min Y, Tian X, Kim YS, Caster JM, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 2016;82:178-93.
  • 48. Bozkurt HH, Tokgöz MA, Yapar A, Atik OŞ. What is the importance of canal-to-diaphysis ratio on osteoporosis-related hip fractures? Eklem Hastalik Cerrahisi 2019;30:296-300.
  • 49. Wei D, Jung J, Yang H, Stout DA, Yang L. Nanotechnology treatment options for osteoporosis and its corresponding consequences. Curr Osteoporos Rep 2016;14:239-47.
  • 50. Wang J, Tao S, Jin X, Song Y, Zhou W, Lou H, et al. Calcium supplement by tetracycline guided amorphous calcium carbonate potentiates osteoblast promotion for synergetic osteoporosis therapy. Theranostics 2020;10:8591-605.
  • 51. Wu T, Sun J, Tan L, Yan Q, Li L, Chen L, et al. Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioact Mater 2020;5:348-57.
  • 52. Ryu TK, Kang RH, Jeong KY, Jun DR, Koh JM, Kim D, et al. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release 2016;232:152-60.
  • 53. Nagai N, Ogata F, Otake H, Nakazawa Y, Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int J Nanomedicine 2018;13:5215-29.
  • 54. Guo P, Xue HY, Wong HL. Therapeutic nanotechnology for bone infection treatment - state of the art. Curr Drug Deliv 2018;15:941-52.
  • 55. Qayoom I, Verma R, Murugan PA, Raina DB, Teotia AK, Matheshwaran S, et al. A biphasic nanohydroxyapatite/ calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation. Sci Rep 2020;10:14128.
  • 56. Qadri S, Haik Y, Mensah-Brown E, Bashir G, Fernandez- Cabezudo MJ, Al-Ramadi BK. Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine 2017;13:2241-50.
  • 57. Martínez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regí M. Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomater 2019;96:547-56.
  • 58. Song W, Seta J, Chen L, Bergum C, Zhou Z, Kanneganti P, et al. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. Biomed Mater 2017;12:045008.
  • 59. Wang Y, Jiang Y, Zhang Y, Wen S, Wang Y, Zhang H. Dual functional electrospun core-shell nanofibers for antiinfective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl 2019;98:134-9.
  • 60. Stravinskas M, Tarasevicius S, Laukaitis S, Nilsson M, Raina DB, Lidgren L. A ceramic bone substitute containing gentamicin gives good outcome in trochanteric hip fractures treated with dynamic hip screw and in revision of total hip arthroplasty: a case series. BMC Musculoskelet Disord 2018;19:438.
  • 61. Atıcı T, Şahin N, Çavun S, Özakin C, Kaleli T. Antibiotic release and antibacterial efficacy in cement spacers and cement beads impregnated with different techniques: In vitro study. Eklem Hastalik Cerrahisi 2018;29:71-8.
  • 62. Al Thaher Y, Perni S, Prokopovich P. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interface Sci 2017;249:234-47.
  • 63. Çağlar Ö, Tokgözoğlu M, Akgün RC, Atilla B. Lowdose vancomycin-loaded cement spacer for two-stage revision of infected total hip arthroplasty. Jt Dis Relat Surg 2020;31:449-55.
  • 64. Aşık MD, Kaplan M, Yalınay M, Güven EÖ, Bozkurt M. Development of a sequential antibiotic releasing system for two-stage total joint replacement surgery. J Biomed Nanotechnol 2019;15:2193-201.
  • 65. Raina DB, Matuszewski LM, Vater C, Bolte J, Isaksson H, Lidgren L, et al. A facile one-stage treatment of critical bone defects using a calcium sulfate/hydroxyapatite biomaterial providing spatiotemporal delivery of bone morphogenic protein-2 and zoledronic acid. Sci Adv 2020;6:eabc1779.
  • 66. J Hill M, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak MR, et al. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine (Lond) 2019;14:2987-3006.
  • 67. Cheng X, Cheng G, Xing X, Yin C, Cheng Y, Zhou X, et al. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Release 2020;319:234-45.
  • 68. Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X, et al. Controlled co-delivery of growth factors through layer-bylayer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano 2019;13:6372-82.
  • 69. Limongi T, Susa F, Allione M, di Fabrizio E. Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics 2020;12:851.
  • 70. Bhattarai DP, Kim MH, Park H, Park WH, Kim BS, Kim CS. Coaxially fabricated polylactic acid electrospun nanofibrous scaffold for sequential release of tauroursodeoxycholic acid and bone morphogenic protein2 to stimulate angiogenesis and bone regeneration. Chemical Engineering Journal 2020;389:123470.
  • 71. Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release 2018;279:69-78.
  • 72. Wang Y, Malcolm DW, Benoit DSW. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 2017;139:127-38.
  • 73. Yang L, Zhang L, Webster TJ. Carbon nanostructures for orthopedic medical applications. Nanomedicine (Lond) 2011;6:1231-44.
  • 74. Sharmeen S, Rahman AFMM, Lubna MM, Salem KS, Islam R, Khan MA. Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioact Mater 2018;3:236-44.
APA GÜVEN E (2021). Nanotechnology-based drug delivery systems in orthopedics. , 267 - 273. 10.5606/ehc.2021.80360
Chicago GÜVEN EYLEM Nanotechnology-based drug delivery systems in orthopedics. (2021): 267 - 273. 10.5606/ehc.2021.80360
MLA GÜVEN EYLEM Nanotechnology-based drug delivery systems in orthopedics. , 2021, ss.267 - 273. 10.5606/ehc.2021.80360
AMA GÜVEN E Nanotechnology-based drug delivery systems in orthopedics. . 2021; 267 - 273. 10.5606/ehc.2021.80360
Vancouver GÜVEN E Nanotechnology-based drug delivery systems in orthopedics. . 2021; 267 - 273. 10.5606/ehc.2021.80360
IEEE GÜVEN E "Nanotechnology-based drug delivery systems in orthopedics." , ss.267 - 273, 2021. 10.5606/ehc.2021.80360
ISNAD GÜVEN, EYLEM. "Nanotechnology-based drug delivery systems in orthopedics". (2021), 267-273. https://doi.org/10.5606/ehc.2021.80360
APA GÜVEN E (2021). Nanotechnology-based drug delivery systems in orthopedics. Joint diseases and related surgery, 32(1), 267 - 273. 10.5606/ehc.2021.80360
Chicago GÜVEN EYLEM Nanotechnology-based drug delivery systems in orthopedics. Joint diseases and related surgery 32, no.1 (2021): 267 - 273. 10.5606/ehc.2021.80360
MLA GÜVEN EYLEM Nanotechnology-based drug delivery systems in orthopedics. Joint diseases and related surgery, vol.32, no.1, 2021, ss.267 - 273. 10.5606/ehc.2021.80360
AMA GÜVEN E Nanotechnology-based drug delivery systems in orthopedics. Joint diseases and related surgery. 2021; 32(1): 267 - 273. 10.5606/ehc.2021.80360
Vancouver GÜVEN E Nanotechnology-based drug delivery systems in orthopedics. Joint diseases and related surgery. 2021; 32(1): 267 - 273. 10.5606/ehc.2021.80360
IEEE GÜVEN E "Nanotechnology-based drug delivery systems in orthopedics." Joint diseases and related surgery, 32, ss.267 - 273, 2021. 10.5606/ehc.2021.80360
ISNAD GÜVEN, EYLEM. "Nanotechnology-based drug delivery systems in orthopedics". Joint diseases and related surgery 32/1 (2021), 267-273. https://doi.org/10.5606/ehc.2021.80360