Yıl: 2020 Cilt: 0 Sayı: 27 Sayfa Aralığı: 57 - 70 Metin Dili: İngilizce DOI: 10.34189/gtd.27.005 İndeks Tarihi: 07-06-2021

DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS

Öz:
In our study, it was aimed to develop a novel method that makes the pressure effect of the airflow created by the articulation of vowels visible/measurable. In order to determine the effect, a male subject produced eight vowels in Contemporary Turkey Turkish (CTT) (a, e, ı, i, o, ö, u, ü) into the combined setting of cool mist and green laser and the movement of the laser beam was recorded with a mobile phone to examine the propulsion distance, duration, delay and speed. The results revealed the consistency of differences between vowels; /a/ and /i/ produced the least (<10cm), /u/ and /ü/ produced the highest (15cm <) propulsion. Push distance; pronouncing duration is related to Jitter, Shimmer and HNR, and HNR was found as the only explanatory variable. The distance of propulsion is related to the duration of phonation, Jitter, Shimmer and Harmonic Noise Ratio (HNR), and HNR was found as the only explanatory variable. Our findings demonstrate that, following the literature, round vowels produced by elongating the lower and upper lip forward could create more airflow. With the development of this experimental design, it will be possible to work on the degree of particle emission in CTT respiratory tract diseases and to obtain new variables in the acoustic description of the segmental and suprasegmental features of speech.
Anahtar Kelime:

Türkçe Ünlülerin İtki Etkilerinin Saptanmasına Yönelik Bir Düzenek Geliştirilmesi

Öz:
Ünlülerinin sesletimiyle oluşan hava akımının basınç etkisini görünür/ölçülebilir kılan yeni bir yöntem geliştirmek için planlanan çalışmamızda; bir erkek denek, ultrasonik soğuk buhar makinası ve yeşil lazer işaretleyici ile hazırlanan deney ortamında Çağdaş Türkiye Türkçesi (ÇTT)’nin sekiz ünlüsünü (a, e, ı, i o, ö, u, ü) üretmiş ve lazer ışının ssoğuk su buharı ortamındaki hareketi cep telefonuyla kaydedilip itilme mesafesi, süresi, gecikmesi ve hızı incelenmiştir. Sonuçlar ünlüler arasındaki farkların tutarlığını göstermiş; /a/ ve /i/ en az (<10cm), /u/ ve /ü/ ise en fazla (15cm<) itilme oluşturmuştur. İtilme mesafesi; sesletim süresi, Jitter, Shimmer ve Harmonik Gürültü Oranı (HNR) ile ilişkili olup tek açıklayıcı değişkeni olarak HNR bulunmuştur. Bulgularımız, literatüre uyumlu olarak, alt ve üst dudağın öne uzatılmasıyla üretilen yuvarlak ünlülerin daha fazla hava akımı yarattığını göstermektedir. Deney dizaynının geliştirilmesi ile hem ÇTT’nin solunum yolu hastalıklarında parçacık yayma derecesine yönelik çalışmalar yapılabilecek hem de konuşmanın parça ve parçalarüstü özelliklerinin akustik tanımlanmasında yeni değişkenler elde edilmiş olacaktır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • WORLD HEALTH ORGANIZATION (WHO) http://www.euro.who.int/en/health-topics/healthemergencies/ coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-apandemic
  • CHEN Y, LIU Q, GUO D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. Doi: 10.1002/jmv.25681
  • SHEREEN MA, KHAN S, KAZMI A, et al. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020;24:91-8. doi: 10.1016/j.jare.2020.03.005
  • SAĞLIK BAKANLIĞI. https://covid19bilgi.saglik.gov.tr/depo/enfeksiyon-kontorlonlemleri/ KISISEL_KORUYUCU_EKIPMAN_KULLANIMI.pdf
  • ANFINRUD P, STADNYTSKYI V, BAX CE, et al. Visualizing speech-generated oral fluid droplets with laser light scattering. N Engl J Med 2020;382:2061-3. Doi: 10.1056/NEJMc2007800
  • MESELSON M. Droplets and Aerosols in the Transmission of SARS-CoV-2. N Engl J Med 2020;382:2063. Doi:10.1056/NEJMc2009324
  • RUBIN EJ, BADEN LR, MORRISSEY S. Audio Interview: Practical Measures to Help Prevent Covid- 19. N Engl J Med. 2020;382:e32. Doi: 10.1056/NEJMe2006742
  • MORAWSKA LJGR, JOHNSON GR, RISTOVSKI ZD, et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 2009; 40:256-269. doi:10.1016/j.jaerosci.2008.11.002
  • JOHNSON GR & MORAWSKA L. The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug Deliv. 2009;22(3):229-37. Doi: 10.1089/jamp.2008.0720.
  • CHAO CHY, WAN MP, MORAWSKA L, et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci. 2009;40:122-33. doi:10.1016/j.jaerosci.2008.10.003
  • JOHNSON GR, MORAWSKA L, RISTOVSKI ZD, et al. Modality of human expired aerosol size distributions. J Aerosol Sci. 2011;42(12):839-51. Doi: 10.1016/j.jaerosci.2011.07.009
  • MUBAREKA S, GROULX N, SAVORY E, et al. Bioaerosols and transmission, a diverse and growing community of practice. Front Public Health. 2019:7:23. Doi: 10.3389/fpubh.2019.00023
  • ASADI S, WEXLER AS, CAPPA CD, et al, The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci Tech. 2020a:1-4. Doi: 10.1080/02786826.2020.1749229
  • NETZ RR, BAX A, EATON WA. Physics of Virus Transmission by Speaking Droplets. 2020; medRxiv. medRxiv preprint. doi: 10.1101/2020.05.12.20099630
  • INOUYE S. SARS transmission: language and droplet production. Lancet. 2003;362 (9378):170.
  • INOUYE S, SUGIHARA Y. Measurement of Puff Strength during Speaking: Comparison of Japanese with English and Chinese Languages, Journal of the Phonetic Society of Japan, 2015;19:43-9.
  • ASADI S, WEXLER AS, CAPPA CD, et al. Aerosol emission and superemission during human speech increase with voice loudness. Sci Rep. 2019;9:1-10.
  • ASADI S, WEXLER AS, CAPPA CD, et al.Effect of voicing and articulation manner on aerosol particle emission during human speech. PloS One 15 2020b;e0227699.
  • GEOGHEGAN PH, LAFFRA AM., HOOGENDORP NK., et al. Experimental measurement of breath exit velocity and expirated bloodstain patterns produced under different exhalation mechanisms. Int J Leg Med. 2017;131(5):1193-201.
  • SAIN A. E, ZOOK J, DAVY BM, et al. Size and mineral composition of airborne particles generated by an ultrasonic humidifier. Indoor air. 2018;28(1):80-8.
  • CRAIG M, JOHNSON R, SCHULTZ S. Steamy optics: A system for demonstrating geometric and physical optics. Phys Teach. 2007;45(4):247-8.
  • KEMALOĞLU YK, MENGÜ G, GÖKDOĞAN Ç, TÜRKCAN AK. A Method to Find out Perceptional Sound Composition of the Vowels in the Contemporary Turkey Turkish. GMJ 2020; 31: 375- 382
  • BOERSMA P, WEENINK D. Praat: doing phonetics by computer. http://www.praat.org/, 2013.
  • BOYCE SE. Coarticulatory organization for lip rounding in Turkish and English. J Acoust Soc Am. 1990:88(6):2584-95.
  • YILMAZ E, DEMIR N. Ses Olayları-I. In: Pilancı H, ed. Türkçe Ses Bilgisi. 1st ed. Eskişehir: Anadolu Üniversitesi Yayınları; 2011. p. 75.
  • ÖZSOY S. Sesbilgisi. Türkçenin Yapısı–I. Sesbilim. 1st ed. İstanbul: Boğaziçi Üniversitesi Yayınevi; 2004. p. 55-84
  • DUYAR TR. Türkçe tek heceli sözcük vurgusunun akustik özelliklerinin belirlenmesi. Ankara: Gazi Üniversitesi Sağlık Bilimleri Enstitüsü. 2019.
  • DUYAR TR, MENGÜ G, BAYRAMOĞLU İ, KEMALOĞLU YK. Türkçenin bürün özelliklerinin bilim ve teknoloji açısından önemi. Gazi Türkiyat, 2019;Güz25:45-55
APA Mengu G, KEMALOGLU Y (2020). DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. , 57 - 70. 10.34189/gtd.27.005
Chicago Mengu Guven,KEMALOGLU Yusuf DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. (2020): 57 - 70. 10.34189/gtd.27.005
MLA Mengu Guven,KEMALOGLU Yusuf DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. , 2020, ss.57 - 70. 10.34189/gtd.27.005
AMA Mengu G,KEMALOGLU Y DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. . 2020; 57 - 70. 10.34189/gtd.27.005
Vancouver Mengu G,KEMALOGLU Y DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. . 2020; 57 - 70. 10.34189/gtd.27.005
IEEE Mengu G,KEMALOGLU Y "DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS." , ss.57 - 70, 2020. 10.34189/gtd.27.005
ISNAD Mengu, Guven - KEMALOGLU, Yusuf. "DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS". (2020), 57-70. https://doi.org/10.34189/gtd.27.005
APA Mengu G, KEMALOGLU Y (2020). DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. Gazi Türkiyat, 0(27), 57 - 70. 10.34189/gtd.27.005
Chicago Mengu Guven,KEMALOGLU Yusuf DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. Gazi Türkiyat 0, no.27 (2020): 57 - 70. 10.34189/gtd.27.005
MLA Mengu Guven,KEMALOGLU Yusuf DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. Gazi Türkiyat, vol.0, no.27, 2020, ss.57 - 70. 10.34189/gtd.27.005
AMA Mengu G,KEMALOGLU Y DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. Gazi Türkiyat. 2020; 0(27): 57 - 70. 10.34189/gtd.27.005
Vancouver Mengu G,KEMALOGLU Y DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS. Gazi Türkiyat. 2020; 0(27): 57 - 70. 10.34189/gtd.27.005
IEEE Mengu G,KEMALOGLU Y "DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS." Gazi Türkiyat, 0, ss.57 - 70, 2020. 10.34189/gtd.27.005
ISNAD Mengu, Guven - KEMALOGLU, Yusuf. "DEVELOPING A SETUP FOR DETERMINING PROPULSION EFFECTS OF TURKISH VOWELS". Gazi Türkiyat 27 (2020), 57-70. https://doi.org/10.34189/gtd.27.005