Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi

Yıl: 2020 Cilt: 23 Sayı: 1 Sayfa Aralığı: 1 - 6 Metin Dili: Türkçe İndeks Tarihi: 08-06-2021

Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi

Öz:
Geri dönüşüm esnasında plastik malzemelere karışan yabancı maddeleri ayrıştırmak zor ve maliyetli bir iştir. Yağ, kir, metalpartikülleri ve boya gibi yabancı maddeler plastik ürünler kullanılırken ince bir tabaka halinde plastik malzemeye karışırlar. Birçokuygulamada geri dönüşümlü malzeme kullanımının ürün üzerinde etkisinin fazla olduğuna inanılır. Plastik malzemenin enjeksiyonmakinasında tekrar eritilerek basılması esnasında yağ ve kir sıcaklığın etkisi ile ayrışırlar. Bakır, özellikle elektronik ve otomotivsektöründe plastik malzemelere en yaygın karışım yapan malzemedir. Bu çalışmada, bakır partikülleri %1, %3, %5, %7 oranlarındakarıştırılmış geri dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) plastik malzemesinin fiziksel özelliklerine etkisi araştırılmıştır.Bakır partüküllü geri dönüşümlü ABS malzemesi ile ilk kez kullanılan ABS malzemesinin gerinim, darbe, akış indeks, termal veelektrik iletkenliği özellikleri araştırılmıştır. Sonuç olarak %3 oranına kadar bakır partikülü karışımlı malzemenin fiziksel vekalıplanabilirlik özelliklerine etkisinin kabul edilebilir sınırlar içerisinde olduğu görülmüştür
Anahtar Kelime:

Effect of Recycled Acrylonitrile Butadiene Styrene (ABS) Plastic Material on Moldability

Öz:
It is difficult and costly to disassemble impurities in plastic materials during recycling. Foreign materials such as oil, dirt, metal particles and paint are mixed into a thin layer of plastic when using plastic products. The use of recyclable materials in many applications is believed to have a greater impact on the product. During the re-melting of the plastic material on the injection machine, the oil and dirt are separated by the effect of temperature. Copper, especially in the electronics and automotive industry, is the most common material for plastic materials. In this study, the effect of copper particles %1, 3%, 5%, 7% and mixed recycled Acrylonitrile Butadiene Styrene (ABS) on the physical properties of plastic material was investigated. The properties of ABS which is used for the first time with copper particulate recycled ABS material are investigated for strain, impact, flow index properties, thermal and electrical conductivity. As a result, it has been observed that the effect of physical and moldability properties of the mixture of copper particles up to 3% is within acceptable limits.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. V Chifor, Z. Tekiner, M. Türker, R Orban, “An Experimental Investigation of Properties of polyethylene Reinforced with Al Powders”, Journal of Zhejiang University-SCIENCE A (Applied Physics Engineering), 1-5, 2010.
  • 2. N. Singh, D. Hui, R. Singh, I.P.S. Ahuja, L. Feo, and F. Fraternali, “Recycling of plastic solid waste: A state of art review and future applications”, Composites Part B, 115: 409-422, (2017).
  • 3. Y. Liu, M. Farnsworth, and A. Tiwari, “A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda”, Journal of Cleaner Production, 140: 1775-1781, (2017).
  • 4. K.H. Sua, J.H. Lin, and C.C. Lin, “Influence of reprocessing on the mechanical properties and structure of polyamide 6”, Journal of Materials Processing Technology, 192–193: 532–538, (2007).
  • 5. N. Feng, X. Wang, and D. Wu, “Surface modification of recycled carbon fiber and its reinforcement effect on nylon
  • 6 composites: Mechanical properties morphology and crystallization behaviors”, Current Applied Physics, 13: 2038-2050, (2013).
  • 6. Pyrolysis of synthetic polymers and plastic wastes., Kinetic study, J.M. Encinar, J.F. González, Fuel Processıng Technology 89: 678 – 686, (2008).
  • 7. X. Hua, Y. Guo, L. Chen, X. Wang, L. Li, Y. Wang, “A novel polymeric intumescent flame retardant: Synthesis, thermal degradation mechanism and application in ABS copolymer”, Polymer Degradation and Stability 97:1772- 1778, (2012).
  • 8. D.J. Jung, J. Cheon, and S.J Na, “Effect of surface preoxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel”, Materials and Design 99: 1–9, (2016).
  • 9. Y. Li, X. Wu, J. Song, J. Li, Q. Shao, N.Cao, N. Lu, and Z. Guo, “Reparation of recycled acrylonitrile- butadiene styrene by pyromellitic dianhydride: Reparation performance evaluation and property analysis”, Polymer, 124: 41-47, (2017).
  • 10. A. Arostegui, M. Sarrionandia, and J. Aurrekoetxea, I. Urrutibeascoa, “Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer”, Polymer Degradation and Stability, 91: 2768-2774, (2006).
  • 11. S.J. Pickering, “Recycling technologies for thermoset composite materials—current status”, Composites: Part A 37: 1206–1215, (2006).
  • 12. D. Perrin, L. Clerc, E. Leroy, J.-M. Lopez-Cuesta, A. Bergeret, “Optimizing a recycling process of SMC composite waste”, Waste Management, 28: 541–548, (2008).
  • 13. A.Ashori, and A.Nourbakhsh, “Characteristics of wood– fiber plastic composites made of recycled materials”, Waste Management, 29: 1291–1295, (2009).
  • 14. S.M. Al-Salem, and P. Lettieri, J. Baeyens “Recycling and recovery routes of plastic solid waste (PSW): A review”, Waste Management 29: 2625–2643, (2009).
  • 15. I. Turku, T. Karkia, A. Puurtinen, “Durability of wood plastic composites manufactured from recycled plastic”, Heliyon, 4: e00559, (2018).
  • 16. D. P. Kamdem, H. Jiang, W.Cui, J. Freed, and L. M. Matuana, “Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service”, Composites: Part A, 35: 347–355, (2004).
  • 17. S. Y. Leu, T.H. Yang, S.F. Lo, and T.H. Yang, “Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs)”, Construction and Building Materials 29: 120–127, (2012).
  • 18. P.Y. Kuo, S.Y. Wang, J.H. Chen, H.C.Hsueh, M.J. Tsai, “Effects of material compositions on the mechanical properties of wood–plastic omposites manufactured by injection molding”, Materials and Design, 30: 3489–3496, (2009).
  • 19. K. B. Adhikary, S. Pang , and M. P. Staiger, “Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE)”, Composites: Part B, 39: 807–815, (2008).
  • 20. M. Gracia, T. Garcia, M. Schlatter, F.M. Cabrera, J. T. Manzanares, and I.Hanafi, “Recycling of acrylonitrilebutadiene-styrene using ınjection moulding machine”, Procedia Technology, 22: 399-406, (2016).
  • 21. J. Palmer, L. Savage, O.R. Ghita, and K.E. Evans, “Sheet moulding compound (SMC) from carbon fibre recyclate,” Composites, Part A, 41: 1232–1237, (2010).
  • 22. J. Howarth, S.S.R. Mareddy, and P. T. Mativenga, “Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite”, Journal of Cleaner Production 81: 46-50, (2014).
  • 23. M.Rahimia, M.Esfahanianb, M. Moradi, “Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS ininjection molding”, Journal of Materials Processing Technology, 214: 2359–2365, (2014).
  • 24. A. Ashmawy, R. McDonald, D. Carreon and F. Atalay, “Stabilization of marginal soils using recycled materials, Final report”, Florida Department of Transportation, Contract Number BD-544-4, February 2006.
APA gültekin toroslu a (2020). Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. , 1 - 6.
Chicago gültekin toroslu ayşegül Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. (2020): 1 - 6.
MLA gültekin toroslu ayşegül Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. , 2020, ss.1 - 6.
AMA gültekin toroslu a Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. . 2020; 1 - 6.
Vancouver gültekin toroslu a Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. . 2020; 1 - 6.
IEEE gültekin toroslu a "Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi." , ss.1 - 6, 2020.
ISNAD gültekin toroslu, ayşegül. "Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi". (2020), 1-6.
APA gültekin toroslu a (2020). Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi, 23(1), 1 - 6.
Chicago gültekin toroslu ayşegül Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi 23, no.1 (2020): 1 - 6.
MLA gültekin toroslu ayşegül Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi, vol.23, no.1, 2020, ss.1 - 6.
AMA gültekin toroslu a Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi. 2020; 23(1): 1 - 6.
Vancouver gültekin toroslu a Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi. 2020; 23(1): 1 - 6.
IEEE gültekin toroslu a "Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi." Politeknik Dergisi, 23, ss.1 - 6, 2020.
ISNAD gültekin toroslu, ayşegül. "Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi". Politeknik Dergisi 23/1 (2020), 1-6.