The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material

Yıl: 2021 Cilt: 25 Sayı: 1 Sayfa Aralığı: 240 - 251 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.755286 İndeks Tarihi: 11-06-2021

The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material

Öz:
The combined effect of hydrothermal treatment temperature and aging time on the structuralproperties of ordered mesoporous KIT-6 material were investigated. A series of KIT-6 materialswere prepared by hydrothermal synthesis procedure. In the first step, experiments wereperformed at 90oC and at different aging times (0-72 h) to understand the effect of hydrothermalaging time. It was concluded that the aging time positively affect the formation of orderedmesoporous structure and uniform pore structure occurs after 18 h. In addition, longhydrothermal treatment time favored the pore enlargement. In the second step, to understandwhich parameter (time or temperature) is more important in the synthesis of highly uniformmaterial, KIT-6 materials were prepared at different temperatures ranging between 60-150oCand at different aging times (24 h and 72 h). The experiments showed that at elevatedtemperatures (>90oC) long aging times negatively affect the structural properties of themesoporous KIT-6 structure. Highly uniform mesoporous KIT-6 material having highcrystallinity, narrow pore size distribution, high BET surface area (726 cm3/g) and high porevolume (1.5 cm3/g) was prepared at 120oC with an aging time of 24 h. However, it wasdetermined that 60oC is not a suitable temperature to obtain KIT-6 material having goodstructural properties and the uniform crystal structure deteriorated at 150oC.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] K.S.V. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rououerol, and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure &Applied Chemistry, vol. 57, no. 4, pp. 603-619, 1985.
  • [2] A.M. Basso, B.P. Nicola, K. BernardoGusmao, and S.B.C. Pergher, “Tunable effect of the calcination of the silanol groups of KIT-6 and SBA-15 Mesoporous Material,” Applied Sciences, vol. 10, pp. 970-986, 2020.
  • [3] F. Hoffmann, M. Cornelius, J. Morell, and M. Froeba, “Silica-Based mesoporous organic– inorganic hybrid materials,” Angewandte Chemie International Edition, vol. 45, pp. 3216–3251, 2006.
  • [4] D.E. Boldrini, S. Angeletti, P.M. Cervellini, and D.M. Reinoso, “Valorization of natural sediment,” ACS Sustainable Chemical Engineering, vol. 7, pp. 4684−4691, 2019.
  • [5] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science, vol. 279, no. 5350, pp. 548-552, 1998.
  • [6] R.A. Sacramento, O.M.S. Cysneiros, B.J.B Silva, and A.O.S. Silva, “Synthesis and characterization of mesoporous materials with SBA and MCM structure types,” Cerâmica, vol. 65, pp. 585-591, 2019.
  • [7] B. Li, X. Luo, J. Huang, X. Wang, and Z. Liang, “One‐pot synthesis of ordered mesoporous Cu‐KIT‐6 and its improved catalytic behavior for the epoxidation of styrene: Effects of the pH value of the initial gel,” Chinese Journal of Catalysis, vol. 38, pp. 518–528, 2017.
  • [8] W. Wang, R. Qi, W. Shan, X. Wang, Q. Jia, J. Zhao, C. Zhang, and H. Ru, “Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process,” Microporous and Mesoporous Materials, vol. 194, pp. 167–173, 2014.
  • [9] L. Xu, C. Wang, and J. Guan, “Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction,” Journal of Solid State Chemistry, vol. 213, pp. 250-255, 2014.
  • [10]F. Kleitz, S.H. Choi, and R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes,” The Royal Society of Chemistry, pp. 2136–2137, 2003.
  • [11]R. Kishor, and A.K. Ghoshal, “APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption,” Chemical Engineering Journal, vol. 262, pp. 882–890, 2015.
  • [12]Q. Liu, J. Li, Z. Zhao, M. Gao, L. Kong, J. Liu and Y. Wei, “Design, synthesis and catalytic performance of vanadiumincorporated mesoporous silica KIT-6 catalysts for the oxidative dehydrogenation of propane to propylene,” Catalysis Science & Technology, vol. 6, pp. 5927-5941, 2016.
  • [13]F. He, J. Luo, and S. Liu, “Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene,” Chemical Engineering Journal, vol. 294, pp. 362–370, 2016.
  • [14]D. Saikia, T.H. Wang, C.J. Chou, J. Fang, L.D. Tsai and H.M. Kao, “A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries,” RSC Advances, vol. 5, pp. 42922–42930, 2015.
  • [15]H. Tang, Y. Ren, S. Wei and G. Liu, “Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity,” Rare Metals, vol. 38, pp. 453–458, 2019.
  • [16]S.N. Talapaneni, K. Ramadass, S.J. Ruban, M. Benzigar, K.S. Lakhi, J.H. Yang, U. Ravon, K. Albahily and A. Vinu, “3D cubic mesoporous C3N4 with tunable pore diameters derived from KIT-6 and their application in base catalyzed Knoevenagel reaction,” Catalysis Today, vol. 324, pp. 33– 38, 2019.
  • [17]M. Dutt, A. Kaushik, M. Tomar, V. Gupta and V. Singh, “Synthesis of mesoporous αFe2O3 nanostructures via nanocasting using MCM-41 and KIT-6 as hard templates for sensing volatile organic compounds (VOCs),” Journal of Porous Materials, vol. 27, pp. 285–294, 2020.
  • [18]Y. Shimasaki, M. Kitahara, M. Shoji, A. Shimojima and H. Wada, “Preparation of ordered mesoporous Au using double gyroid mesoporous silica KIT-6 via a seed-mediated growth process,” Chemistry, An Asian Journal, vol. 13, no. 24, pp. 3935–3941, 2018.
  • [19]B. Bai, Q. Qiao, Y. Li, Y. Peng and J. Li, “Effect of pore size in mesoporous MnO2 prepared by KIT‐6 aged at different temperatures on ethanol catalytic oxidation,” Chinese Journal of Catalysis, vol. 39, pp. 630–638, 2018.
  • [20]Y. Kim, J. Yoon, G.O. Park, S.B. Park, H. Kim, J.M. Kim and W.S. Yoon, “Enhancement of the interfacial reaction on mesoporous RuO2 for next generation Li batteries,” Journal of Power Sources, vol. 396, pp. 749–753, 2018.
  • [21]M. Taghizadeh, H. Akhoundzadeh and A. Rezayan, “Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming,” International Journal of Hydrogen Energy, vol. 43, pp. 10926–10937, 2018.
  • [22]S. Chirra, S. Siliveri, A. Kumar, A. Srinath, G. Sripal and R. Gujjula, “KIT-6: synthesis of a novel three-dimensional mesoporous catalyst and studies on its enhanced catalytic applications,” Journal of Porous Materials, vol. 26, pp. 1667–1677, 2019.
  • [23]J.P. Ruelas-Leyva, A. Mata-Martinez, A. Talavera-López, S.A. Gómez, S.A. JimenezLam and G.A. Fuentes, “Dehydrogenation of propane to propylene with highly stable catalysts of pt-sn supported over mesoporous silica KIT-6,” International Journal of Chemical Reactor Engineering, vol. 16, no. 10, pp. 1-9, 2018.
  • [24]A. Mata-Martinez, S.A. Jimenez-Lam, A. Talavera-López, S.A. Gómez, G.A. Fuentes, L.A. Picos-Corrales, J.C. Piña-Victoria, J.P. Ruelas-Leyva, “The effect of Sn content in a Pt/KIT-6 catalyst over its performance in the dehydrogenation of propane,” International Journal of Chemical Reactor Engineering, vol. 16, no. 10, pp. 1-9, 2018.
  • [25]H. Sun, C.M. Parlett, M.A. Isaacs, X. Liu, G. Adwek, J. Wang, B. Shen, J. Huang and J. Wu, “Development of Ca/KIT-6 adsorbents for high temperature CO2 capture,” Fuel, vol. 235, pp. 1070-1076, 2019.
  • [26]D. Xia, Y. Chen, C. Li, C. Liu and G. Zhou, “Carbon dioxide reforming of methane to syngas over ordered mesoporous Ni/KIT-6 catalysts,” International Journal of Hydrogen Energy, vol. 43, no. 45, pp. 20488-20499, 2018.
  • [27]H. Liu, S. Xu, G. Zhou, K. Xiong, Z. Jiao, S. Wang, “CO2 hydrogenation to methane over Co/KIT-6 catalysts: Effect of Co content,” Fuel, vol. 217, pp. 570-576, 2018.
  • [28]J.M. Cho, G.Y. Han, H-K. Jeong, H-S. Roh and J.W. Bae, “Effects of ordered mesoporous bimodal structures of Fe/KIT-6 for CO hydrogenation activity to hydrocarbons,” Chemical Engineering Journal, vol. 354, pp. 197-207, 2018.
  • [29]C. Tuncer, “Hydrothermal synthesis and solgel methods for CdS particle production in different morphologies and their use in wastewater applications,” Sakarya University Journal of Science, vol. 22, no. 3, pp. 888-897, 2018.
  • [30]F.R.D. Fernandes, F.G.H.S. Pinto, E.L.F. Lima, L.D. Souza, V.P.S. Caldeira and A.G.D. Santos, “Influence of synthesis parameters in obtaining KIT-6 mesoporous material,” Applied Sciences, vol. 8, pp. 725- 742, 2018.
  • [31]M.M. Ayad, N.A. Salahuddin, A.A. El-nasr and N.L. Torad, “Amine-functionalized mesoporous silica KIT-6 as a controlled release drug delivery carrier,” Microporous Mesoporous Materials, vol. 229, pp. 166– 177, 2016.
  • [32]G.G. Karthikeyan, G. Boopathi and A. Pandurangan, “Facile synthesis of mesoporous carbon spheres using 3D cubic Fe-KIT-6 by CVD technique for the application of active electrode materials in supercapacitors,” ACS Omega, vol. 3, pp. 16658–16671, 2018.
  • [33]R. Merkache, I. Fechete, M. Maamache, M. Bernard, P. Turek, K. Al-dalama and F. Garin, “3D ordered mesoporous Fe-KIT-6 catalysts for methylcyclopentane (MCP) conversion and carbon dioxide (CO2) hydrogenation for energy and environmental applications,” Applied Catalysis A : General, vol. 504, pp. 672–681, 2015.
  • [34]J. Xu, Y. Hong, M.J. Cheng, B. Xue and Y.X. Li, “Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and its enhanced catalytic performance for direct hydroxylation of benzene to phenol,” Microporous and Mesoporous Materials, vol. 285, pp. 223–230, 2019.
  • [35]K.A. Cychosz and M. Thommes, “Progress in the physisorption characterization of nanoporous gas storage materials,” Engineering, vol. 4, pp. 559–566, 2018.
  • [36]T.N. Phan, M.K. Gong, R. Thangavel, Y.S. Lee and C.H. Ko, “Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures,” Journal of Alloys Compounds, vol. 780, pp. 90–97, 2019.
  • [37]R. Kishor and A.K. Ghoshal, “Understanding the hydrothermal, thermal, mechanical and hydrolytic stability of mesoporous KIT-6: A comprehensive study,” Microporous and Mesoporous Materials, vol. 242, pp. 127– 135, 2017.
  • [38]A. H. Elhaj Yousif, O. Y. Omer Alhussein and M. S. Ali Eltoum, “Characterization of hydrolyzed products of tera ethoxy silane prepared by sol-gel method,” International Journal of Multidisciplinary Sciences and Engineering, vol. 6, pp. 19-24, 2015.
  • [39]X. Shen, Y. Zhai, Y. Sun and H. Gu, “Preparation of monodisperse spherical SiO2 by microwave hydrothermal method and kinetics of dehydrated hydroxyl,” Journal of Material Science and Technology, vol. 26, no. 8, pp. 711-714, 2010.
APA Koyuncu D (2021). The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. , 240 - 251. 10.16984/saufenbilder.755286
Chicago Koyuncu Dilsad Dolunay Eslek The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. (2021): 240 - 251. 10.16984/saufenbilder.755286
MLA Koyuncu Dilsad Dolunay Eslek The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. , 2021, ss.240 - 251. 10.16984/saufenbilder.755286
AMA Koyuncu D The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. . 2021; 240 - 251. 10.16984/saufenbilder.755286
Vancouver Koyuncu D The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. . 2021; 240 - 251. 10.16984/saufenbilder.755286
IEEE Koyuncu D "The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material." , ss.240 - 251, 2021. 10.16984/saufenbilder.755286
ISNAD Koyuncu, Dilsad Dolunay Eslek. "The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material". (2021), 240-251. https://doi.org/10.16984/saufenbilder.755286
APA Koyuncu D (2021). The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 240 - 251. 10.16984/saufenbilder.755286
Chicago Koyuncu Dilsad Dolunay Eslek The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no.1 (2021): 240 - 251. 10.16984/saufenbilder.755286
MLA Koyuncu Dilsad Dolunay Eslek The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.25, no.1, 2021, ss.240 - 251. 10.16984/saufenbilder.755286
AMA Koyuncu D The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(1): 240 - 251. 10.16984/saufenbilder.755286
Vancouver Koyuncu D The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(1): 240 - 251. 10.16984/saufenbilder.755286
IEEE Koyuncu D "The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25, ss.240 - 251, 2021. 10.16984/saufenbilder.755286
ISNAD Koyuncu, Dilsad Dolunay Eslek. "The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (2021), 240-251. https://doi.org/10.16984/saufenbilder.755286