Yıl: 2020 Cilt: 41 Sayı: 1 Sayfa Aralığı: 30 - 55 Metin Dili: Türkçe DOI: 10.17824/yerbilimleri.617852 İndeks Tarihi: 14-06-2021

Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi

Öz:
Sismolojik gözlem ve verilerin ters çözüm işlemleri ile modellenmeleri, bir depremin kaynak mekanizması çözümünün ve kinematik ve dinamik kaynak parametrelerinin (fay düzlemine ait doğrultu, eğim, kayma açısı, deprem odak derinliği, sismik moment, fay uzunluğu, fay genişliği, maksimum ve ortalama yerdeğiştirme miktarı, gerilme düşümü, kırılma süresi vb) belirlenmesine olanak tanımaktadır. Bu parametreler, daha sonra yapılacak olan diğer çalışmalarda (örn., tsunami simülasyonları vb) giriş parametreleri olarak kullanılmaktadır. Bu çalışmada, 08 Eylül 2017 tarihinde Chiapas (Meksika) bölgesinde meydana gelen Mw8.2 büyüklüğündeki yıkıcı depremin kaynak mekanizması çözümü ve fay düzlemi üzerinde gerçekleşen kayma/yırtılma dağılımı, telesismik uzaklıklarda kaydedilen uzun periyotlu Pve SH- ve geniş-bantlı P- dalga şekillerinin modellenmesi sonucunda belirlenmiştir. Sonuçlar, 08 Eylül 2017 Chiapas (Meksika) depreminin çok küçük doğrultu atım bileşenine sahip normal faylanma mekanizmasıyla ve basit yapılı bir kırılmayla 54 km odak derinliğinde meydana geldiğini göstermektedir. Ayrıca, KB-GD uzanımlı fay düzlemi üzerinde gerçekleşen kırılmanın yaklaşık 125 km fay uzunluğuna ve 55 km fay genişliğine sahip bir alanda meydana geldiği, maksimum yerdeğiştirme miktarının ise yaklaşık olarak 22.10 m olduğu saptanmıştır. Tekdüze (homojen) kayma dağılımı modeline ve 30 yay-sn çözünürlüklü GEBCO-BODC batimetri verisine dayalı olarak gerçekleştirilen sayısaltsunami simülasyonu ile deprem nedeniyle oluşan tsunami dalgalarının Pasifik okyanusu içerisinde ilerleyişi modellenerek çeşitli kıyılar için yapay tsunami dalgaları hesaplanmıştır. Hesaplanan tsunami dalgaları Derin Deniz Tsunami Belirleme ve Raporlama Şamandıraları (DART) ve gel-git ölçerler tarafından kaydedilen gerçek-zamanlı tsunami verileri ile karşılaştırılmıştır. Sonuç olarak, yapay tsunami dalgalarının gerçek-zamanlı kayıtlar ile nispeten uyumlu olduğu gözlenmiştir. Ancak, bu uyum özellikle okyanus/deniz içi şamandıra kayıtlarında daha fazla, kıyılardaki gel-git ölçer kayıtları için ise göreceli olarak daha azdır. Kıyılarda gözlenen tsunami dalgalarının daha iyi modellenebilmesinin, sayısal tsunami simülasyonlarında yüksek çözünürlüklü batimetri verisinin ve depreme ait sonlu-fay kayma dağılımı modelinin kullanılması ile mümkün olabileceği önerilmektedir.
Anahtar Kelime:

Numerical Tsunami Simulations based on Earthquake Source Mechanism Parameters: A case study of the September 08, 2017 Chiapas-Mexico (Mw 8.2) Earthquake and Associated Tsunami

Öz:
Modeling of seismological data by inversion processes provides earthquake sourcemechanism solutions (e.g, strike, dip and rake angles of the fault plane, earthquake focaldepth and seismic moment etc.) and kinematic and dynamic source parameters (e.g, faultlength, fault width, maximum and average displacement amount, stress drop, ruptureduration etc.). These parameters are used as input constraints for further analysis,particularly for tsunami modeling. In this study, we provide an example of teleseismicwaveform inversion and numerical tsunami simulation studies in order to demonstrate theimportance and necessity of seismological data in tsunami studies. We obtained sourcemechanism solution and finite-fault slip distribution model of the destructive 08 September2017 (Mw 8.2) earthquake occurred in Chiapas (Mexico) region by inverting long period P and SH- and broad-band P-waveforms recorded at telesismic stations. Overall resultsshow that this earthquake occurred with a normal faulting mechanism and a very smallstrike-slip component at a focal depth of 54 km, and a very simple rupture. In addition, slipdistribution model of this event showed that the rupture occurred on the NW-SE trendingfault plane has an area with a fault length of about 125 km and fault width of 55 km with amaximum displacement amount of 22.10 m. Then, numerical tsunami simulations wereperformed based on a uniform slip model and GEBCO-BODC bathymetry data with 30 arc sec resolution, and propagation of tsunami waves trigerred by this earthquake in thePacific Ocean have been modeled. Synthetic tsunami waves were calculated for various coasts and they were further compared with the real-time tsunami data recorded by DeepOcean Assesment and Reporting of Tsunami (DART) and tide gauges. As a result, it isobserved that synthetic tsunami waves are relatively compatible with real-time recordings.However, this consistency is particularly high for DART buoy records in open ocean and relatively less for tide gauge records on shorelines. Hence, we suggest that bettermodeling of tsunami waves recorded at tide gauges on the coasts might be achieved byusing a high-resolution bathymetry data and a detailed finite-fault slip distribution model ofearthquakes in numerical simulations.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adriano, B., Fujii, Y., Koshimura, S., Mas, E., Ruiz-Angulo, A. and Estrada, M., 2018. Tsunami source inversion using tide gauge and DART tsunami waveforms of the 2017 Mw 8.2 Mexico earthquake. Pure and Applied Geophysics, 175 (1), 35-48.
  • Aki, K. and Richards, P., 1980. Quantitative seismology: theory and methods. W.H. Freeman and Co., New York.
  • Ambraseys, N.N. 1962. Data for the investigation of the seismic sea waves in the Eastern Mediterranean. Bulletin of the Seismological Society of America, 52, 895–913.
  • Ammon, C.J., Lay, T., Kanamori, H. and Cleveland, M., 2011. A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63, 693-696.
  • Antonopoulos, J. 1980. Data from investigation on seismic sea-waves events in the Eastern Mediterranean from the birth of Christ to 1980 AD (6 parts). Annali di Geofisica, 33, 141–248.
  • Basili, R., Tiberti, M. M., Kastelic, V., Romano, F., Piatanesi, A., Selva, J. and Lorito, S., 2013. Integrating geologic fault data into tsunami hazard studies. Natural Hazards and Earth System Sciences, 13, 1025–1050.
  • Bohnoff, M., Hajes, H.-P. and Meier, T., 2005. Deformation and stress regimes in the Hellenic subduction zone from focal Mechanisms. Journal of Seismology, 9, 341– 366.
  • Chacón-Barrantes, S., 2018. The 2017 México tsunami record, numerical modeling and threat assessment in Costa Rica. Pure and Applied Geophysics, 175, 1939-2950.
  • Dziewonski, A.M., and Anderson, D.L., 1981. Preliminary Reference Earth Model (PREM). Physics of the Earth and Planetary Interiors, 25, 297-356.
  • Fielding, E.J., Lundgren, P.R., Taymaz, T., Yolsal-Çevikbilen, S. and Owen, S.E., 2013. Fault-Slip source models for the 2011 M7.1 Van earthquake in Turkey from SAR interferometry, pixel offset tracking, GPS and seismic waveform analysis. Seismological Research Letters, 84 (4), 579-593.
  • Franco, S.I., Kostoglodov, V., Larson, K.M., Manea, V.C., Manea, M. and Santiago, J.A., 2005. Propagation of the 2001 – 2002 silent earthquake and interplate coupling in the Oaxaca subduction zone, Mexico. Earth Planets Space, 57, 973 – 985.
  • Franke, D., Schnabel, M., Ladage, S., Tappin, D.R., Neben, S., Djajadihardja, Y. S., Müller, C., Kopp, H. and Gaedicke, C., 2008. The great Sumatra–Andaman earthquakes - Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth and Planetary Science Letters, 269 (1–2), 118–130.
  • Futterman, W., 1962. Dispersive body waves. Journal of Geophysical Research, 67, 5279 – 5291.
  • GEBCO-BODC, “General Bathymetric Chart of the Oceans–British Oceanographic Data Centre”. https:// .gebco.net”, Son erişim tarihi: Ekim 2018.
  • Geist, E.L., 1999. Local tsunamis and earthquake source parameters. Adv. Geophys., 39, 117– 209.
  • Geist, E.L. and Dmowska, R., 1999. Local tsunamis and distributed slip at the source. Pure and Applied Geophysics, 154, 485–512.
  • Geist, E.L. and Oglesby, D.D., 2014. Earthquake Mechanism and Seafloor Deformation for Tsunami Generation. Encyclopedia of Earthquake Engineering, doi: 10.1007/978-3- 642-36197-5_296-1.
  • Gica, E., Teng, M., Liu, P.L. -F, Titov, V.V. and Zhou, H., 2007. Sensitivity analysis of source parameters for earthquake generated distant tsunamis. Journal of Waterway, Port, Coastal and Ocean Engineering, 133 (6), 429–441.
  • Goldstein, P., Dodge, D., Firpo, M. and Minner, L., 2003. SAC2000: Signal processing and analysis tools for seismologists and engineers. In Lee W.H.K., Kanamori H., Jennings P.C. and Kisslinger C., Eds. Contribution to “The IASPEI International Handbook of Earthquake and Engineering Seismology”, Academic Press, London.
  • Goldstein, P. and Snoke, A., 2005. SAC availability for the IRIS community: Incorporated Research Institutions for Seismology Newsletter, v. 7, no. 1.
  • Guidoboni, E. and Comastri, A. 2005a. Catalogue of Earthquakes and Tsunamis in the Mediterranean area From the 11th to the 15th Century. INGV-SGA, Bologna.
  • Guidoboni, E. and Comastri, A. 2005b. Two thousand years of earthquakes and tsunamis in the Aegean are (from 5th BC to 15th century). International Symposium on the Geodynamics of Eastern Mediterranean: Active Tectonics of the Aegean Region. Abstract Book: Kadir Has University, 15–18 June, 2005, İstanbul, Turkey, p. 242.
  • Guo, R., Zheng, Y., Xu, J., Zhongshan, J., 2019. Seismic and aseismic fault slip associated with the 2017 Mw 8.2 Chiapas, Mexico earthquake sequence. Seismological Research Letters, 90 (3), 1111-1120.
  • Gusman, A.R., Tanioka,Y., MacInnes, B.T. and Tsushima, H., 2014. A methodology for near-field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami. Journal of Geophysical Research: Solid Earth, 119, 8186–8206, doi:10.1002/ 2014JB010958.
  • Gusman, A.R., Mulia, I.E. and Satake, K., 2018. Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (Mw 8.2) in Mexico estimated from tsunami waveforms. Geophysical Research Letters, 45, 646-653.
  • Heidarzadeh, M., Ishibe, T. and Harada, T., 2018. Constraining the source of the Mw 8.1 Chiapas, Mexico earthquake of 8 September 2017 using teleseismic and tsunami observations. Pure and Applied Geophysics, 175, doi:10.1007/s00024-018-1837-6.
  • Howell, A., Jackson, J., Copley, A., McKenzie, D. and Nissen, E., 2017. Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International, 211, 593-620.
  • IOC, 2017. Intergovernmental Oceanographic Commission, http://www.iocsealevelmonitoring.org, Son Erişim Tarihi: Ekim 2017.
  • Jamelot, A., Gailler, A., Heinrich, Ph., Vallage, A., Champenois, J., 2019. Tsunami Simulations of the Sulawesi Mw 7.5 Event: Comparison of Seismic Sources Issued from a Tsunami Warning Context Versus Post-Event Finite Source. Pure and Applied Geophysics, 176, 3351-3376.
  • Jiménez, C., 2018. Seismic source characteristics of the intraslab 2017 Chiapas-Mexico earthquake (Mw 8.2). Physics of the Earth and Planetary Interiors, 280, 69-75.
  • Kelleher, J., Sykes L. and Oliver J., 1973. Possible criteria for predicting earthquake locations and their application to major plate boundaries of the Pacific and the Caribbean. Journal of Geophysical Research, 78 (14), 2547–2585.
  • Kelleher, J. and McCann., W., 1976. Buoyant zones, great earthquakes, and unstable boundaries of subduction. Journal of Geophysical Research, 81, 4885-4896.
  • Kikuchi, M. and Kanamori, H., 1991. Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81 (6), 2335–2350.
  • Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S. N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., De Shon, H.R., Ekstrom, G., Satake, K. and Sipkin, S., 2005. The great Sumatra– Andaman earthquake of 26 December 2004. Science, 308, 1127–1133.
  • Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K.F., Kwong, K. and Koper, K.D., 2013. The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Science Letters, 375, 57-70.
  • Liu, P.L.F., Woo, S.B. and Cho, Y.S., 1998. Computer programs for tsunami propagation and inundation. Cornell University, Ithaca.
  • Mansinha, L. and Smylie, D.E., 1971. The displacement fields of inclined faults. Bull. Seism. Soc. Am., 61, 1433–1440.
  • McCaffrey, R., Zwick, P. and Abers, G., 1991. SYN4 Program. IASPEI Software Library, 3, 81-166.
  • McNally, K.C. and Minster, J.B., 1981. Nonuniform seismic slip rates along the Middle America Trench. Journal of Geophysical Research, 86 (B6) , 4949–4959.
  • Mendoza, C., 1993. Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms: Implications for asperity interaction in the Mihoacan plate boundary segment. Journal of Geophysical Research, 98, 8197-8210
  • Meriç, H.T., 2019. Source models of September 25, 2013 Acari-Peru (Mw 7.1) and September 08, 2017 Chiapas-Mexico (Mw 8.2) earthquakes and Tsunami Simulations. Istanbul Technical University, Graduate School of Science and Engineering and Technology, MSc. Thesis, 82 sayfa, İstanbul, Turkey.
  • Mofjeld, H. O., Titov, V. V., Gonz lez, F. I. and Newman, J. C., 2001. Tsunami scattering provinces in the Pacific Ocean. Geophysical Research Letters, 28 (2), 335–337.
  • Molnar, P. and Lyon-Caen, H., 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International, 99, 123–154.
  • Nishenko, S.P., 1991. Circum-Pacific seismic potential: 1989–1999. Pure and Applied Geophysics, 135 (2), 169–259.
  • NDBC, 2017. National Data Buoy Center. https://www.ndbc.noaa.gov, Son Erişim Tarihi: Ekim 2017.
  • Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135-1154.
  • Okal, E.A. 1988. Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards, 1, 67–96.
  • Okal, E.A., Fritz, H. M. and Sladen, A., 2009. 2004 Sumatra- Andaman tsunami surveys in the Comoro Islands and Tanzania and regional tsunami hazard from future Sumatra events. South African Journal of Geology, 112, 343-358.
  • Okuwaki, R. and Yagi, Y., 2017. Rupture Process during the Mw 8.1 2017 Chiapas Mexico Earthquake: Shallow Intraplate Normal Faulting by Slab Bending. Geophysical Research Letters, 44, 11816-11823.
  • Pakoksung, K., Suppasri, A., Imamura, F., Athanasius, C., Omang, A. and Muhari, A., 2019. Simulation of the Submarine Landslide Tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, Using a Two-Layer Model. Pure and Applied Geophysics, 176, 3323-3350.
  • Papadopoulos, G.A., Daskalaki, E., Fokaefs, A.i and Giraleas, N. 2007. Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in the east Hellenic Arc and Trench system. Natural Hazards and Earth System Sciences, 7, 57–64.
  • Ponce, L., Suarez, G. and Lomas, E., 1992. Geometry and state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec, Mexico. Geophysical Research Letters, 19, 773-776.
  • Ramírez-Herrera, M.T., Néstor C., Ruiz-Angulo, A., Melgar, D. and Zavala-Hidalgo, J., 2018. The 8 September 2017 Tsunami triggered by the Mw 8.2 Intraplate Earthquake, Chiapas, Mexico. Pure and Applied Geophysics, 175 (1), 25-34.
  • Ruiz-Const n, A., Galindo-Zaldìvar, J., Pedrera, A., Célérier, B., Marìn-Lechado, C., 2011. Stress distribution at the transition from subduction to continental collision (northwestern and central Betic Cordillera). Geochemistry Geophysics Geosystems, 12 (12), Q12002, doi:10.1029/2011GC003824.
  • Saltogianni, V., Gianniou, M., Taymaz, T., Yolsal-Çevikbilen, S. and Stiros, S., 2015. FaultSlip Source Models for the 2014 Mw 6.9 Samothraki-Gökçeada Earthquake (North Aegean Trough): combining geodetic and seismological observations. Journal of Geophysical Research – Solid Earth, 120, doi:10.1002/2015JB012052.
  • Satake, K., 1988. Effects of bathymetry on tsunami propagation: application of ray tracing to tsunamis. Pure and Applied Geophysics, 126, 27-36.
  • Shaw, B. and Jackson, J., 2010. Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181 (2), 966-984.
  • Sibuet, J.C., Rangin, C., LePichon, X., Singh, S., Cattaneo, A., Graindorge, D., Klingelhoefer, F., Lin, J.Y., Malod, J., Maury, T., Schneider, J. L., Sultan, N., Umber, M. and Yamaguchi, H., 2007. The “Sumatra aftershocks” team, 26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra. Earth and Planetary Science Letters, 263 (1-2), 88-103.
  • Singh, S. K., Astiz, L. and Havskov, J., 1981. Seismic gaps and recurrence periods of large earthquakes along the Mexican Subduction Zone: A Re-examination. Bulletin of the Seismological Society of America, 71 (3), 827-843.
  • Singh, S. K., Shapiro M.N., Iglesias-Mendoza A., Cruz-Atienza V. and Pacheco J., 2000. Popocatepetl, an active volcano, reduce seismic hazard to Mexico City. Geophysical Research Letters, 27, 2753–2756.
  • Song, C. and Ge, Z., 2019. 3D model backprojection of the 2017 Mw 8.2 Chiapas earthquake: a two-stage rupture with a barrier-induced velocity increase. Seismological Research Letters, 90 (3), 1121-1130.
  • Spagnotto, S., Alvarez, O. and Folguera, A., 2018. Static stress increase in the outer forearc produced by Mw 8.2 September 8, 2017 Mexico earthquake and its relation to the gravity signal. Pure and Applied Geophysics, 175, 2575-2593.
  • Tan, O. and Taymaz, T., 2006. Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. In: Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, Special Paper, 409, 531-578.
  • Tang, L., Titov, V. V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E. N., Chamberlin, C., Gica, E. and Newman, J., 2008. Tsunami forecast analysis for the May 2006 Tonga tsunami. Journa of Geophysical Research, 113, C12015, doi:10.1029/2008JC004922.
  • Taymaz, T., Jackson, J. and Westaway, R., 1990. Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International, 102, 695-731.
  • Taymaz, T., Jackson, J. and McKenzie, D., 1991. Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106, 433–490.
  • Taymaz, T., Wright, T.J., Yolsal, S., Tan, O., Fielding, E. and Seyitoğlu, G., 2007. Source characteristics of the 6 June 2000 Orta – Çankırı (central Turkey) earthquake: a synthesis of seismological, geological and geodetic (InSAR) observations and internal deformation of the Anatolian plate. in: The Geodynamics of the Aegean and Anatolia, Geological Society, London, Special Publication, 291, 259-290.
  • Titov, V. V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., Gonz lez, F. I., 2005. The global reach of the 26 December 2004 Sumatra Tsunami. Science, doi: 10.1126/science.1114576.
  • Ulrich, T., Vater, S., Madden, E.H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E. J., Liang, C. and Gabriel, A.-A., 2019. Coupled, Physics-Based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi Tsunami. Pure and Applied Geophysics, 176, 4069–4109.
  • Ulutaş, E., 2013. Comparison of the seafloor displacement from uniform and non-uniform slip models on tsunami simulation of the 2011 Tohoku–Oki earthquake. Journal of Asian Earth Sciences, 62, 568–585.
  • Wang, X., 2009. User Manual for COMCOT version 1.7 (first draft), Cornell University.
  • Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974-1002.
  • Wessel, P. and Smith, W.H.F., 1998. New, improved version of generic mapping tools released. Eos Trans. AGU, 79 (47), 579.
  • Yagi, Y. and Kikuchi, M., 2000. Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophysical Research Letters, 27, 1969-1972.
  • Yagi, Y., Nishimura, N. and Kasahara, A., 2012. Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth Planets Space, 64, E13–E16.
  • Ye, L., Lay, T., Bai, Y., Cheung, K.F., Kanamori, H., 2017. The 2017 Mw 8.2 Chiapas, Mexico Earthquake: Energetic Slab Detachment. Geophysical Research Letters, 44, 11824–11832.
  • Yolsal, S., 2008. Girit-Kıbrıs Yayları ve Ölü Deniz Fay Zonu Çevresinde Oluşan Depremlerin Kaynak Mekanizması Parametreleri, Kayma dağılımları ve Tarihsel Tsunami simülasyonları. Doktora Tezi, 523 sayfa, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Yolsal, S. and Taymaz, T. 2010. Sensitivity analysis on relations between earthquake rupture parameters and far-field tsunami waves: Case studies in the Eastern Mediterranean region. Turkish Journal of Earth Sciences, 19, 313–349.
  • Yolsal-Çevikbilen, S. and Taymaz, T., 2012. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536–537, 61-100.
  • Yolsal-Çevikbilen, S. and Taymaz, T., 2019. Source characteristics of the 28 September 2018 Mw 7.5 Palu-Sulawesi, Indonesia (SE Asia) earthquake based on inversion of teleseismic bodywaves. Pure and Applied Geophysics, 176, 4111–4126.
  • Yolsal, S., Taymaz, T. and Yalçıner, A.C., 2007. Understanding tsunamis, potential source regions and tsunami prone mechanisms in the Eastern Mediterranean. in The Geodynamics of the Aegean and Anatolia, Eds. Taymaz, T., Yılmaz, Y. and Dilek, Y., Special Publication, Geological Society, London, Special Publications, 291, 201-230.
  • Yolsal-Çevikbilen, S., Taymaz, T., Ulutaş, E., 2017. Aktif dalma batma zonlarında meydana gelen depremlerin kaynak mekanizması parametreleri, kayma/yırtılma dağılımları ve matematiksel tsunami simülasyonları. TÜBİTAK-ÇAYDAG 1001 Araştırma Projesi, Proje No: 114Y066, Final Proje Raporu, 354 sayfa.
  • Yolsal-Çevikbilen, S., Ulutaş, E. and Taymaz, T., 2019. Source models of the 2012 Haida Gwaii (Canada) and 2015 Illapel (Chile) earthquakes and numerical simulations of related tsunamis. Pure and Applied Geophysics, 176 (7), 2995-3033.
  • Zwick, P., McCaffrey, R. and Abers, G., 1994. MT5 Program. IASPEI Software Library, 4.
APA Meriç H, Yolsal Cevikbilen S, TAYMAZ T (2020). Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. , 30 - 55. 10.17824/yerbilimleri.617852
Chicago Meriç Hakan Tarık,Yolsal Cevikbilen Seda,TAYMAZ TUNCAY Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. (2020): 30 - 55. 10.17824/yerbilimleri.617852
MLA Meriç Hakan Tarık,Yolsal Cevikbilen Seda,TAYMAZ TUNCAY Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. , 2020, ss.30 - 55. 10.17824/yerbilimleri.617852
AMA Meriç H,Yolsal Cevikbilen S,TAYMAZ T Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. . 2020; 30 - 55. 10.17824/yerbilimleri.617852
Vancouver Meriç H,Yolsal Cevikbilen S,TAYMAZ T Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. . 2020; 30 - 55. 10.17824/yerbilimleri.617852
IEEE Meriç H,Yolsal Cevikbilen S,TAYMAZ T "Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi." , ss.30 - 55, 2020. 10.17824/yerbilimleri.617852
ISNAD Meriç, Hakan Tarık vd. "Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi". (2020), 30-55. https://doi.org/10.17824/yerbilimleri.617852
APA Meriç H, Yolsal Cevikbilen S, TAYMAZ T (2020). Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. Yerbilimleri, 41(1), 30 - 55. 10.17824/yerbilimleri.617852
Chicago Meriç Hakan Tarık,Yolsal Cevikbilen Seda,TAYMAZ TUNCAY Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. Yerbilimleri 41, no.1 (2020): 30 - 55. 10.17824/yerbilimleri.617852
MLA Meriç Hakan Tarık,Yolsal Cevikbilen Seda,TAYMAZ TUNCAY Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. Yerbilimleri, vol.41, no.1, 2020, ss.30 - 55. 10.17824/yerbilimleri.617852
AMA Meriç H,Yolsal Cevikbilen S,TAYMAZ T Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. Yerbilimleri. 2020; 41(1): 30 - 55. 10.17824/yerbilimleri.617852
Vancouver Meriç H,Yolsal Cevikbilen S,TAYMAZ T Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi. Yerbilimleri. 2020; 41(1): 30 - 55. 10.17824/yerbilimleri.617852
IEEE Meriç H,Yolsal Cevikbilen S,TAYMAZ T "Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi." Yerbilimleri, 41, ss.30 - 55, 2020. 10.17824/yerbilimleri.617852
ISNAD Meriç, Hakan Tarık vd. "Deprem Kaynak Mekanizması Parametreleriyle Sayısal Tsunami Simülasyonları:08 Eylül 2017 Chiapas-Meksika Depremi (Mw 8.2) ve Tsunamisi". Yerbilimleri 41/1 (2020), 30-55. https://doi.org/10.17824/yerbilimleri.617852