Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP

Yıl: 2020 Cilt: 67 Sayı: 4 Sayfa Aralığı: 349 - 355 Metin Dili: İngilizce DOI: 10.33988/auvfd.603868 İndeks Tarihi: 14-06-2021

Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP

Öz:
One of the most challenging aspects in culture independent methods for foodborne pathogens’ detection is discrimination of dead and live microorganisms. This study aimed to determine the Vibrio parahaemolyticus in seafoods via direct plate counting (DPC) and toxR-based quantitative loop-mediated isothermal amplification (qLAMP) and to discriminate dead and live cells using propidium monoazide (PMA)-qLAMP. A total of 200 samples including finfishes (n= 100) and shrimps (n= 100), representing the Mediterranean, Black and Aegean sea were collected from supermarkets and fish markets of Konya-Turkey. qLAMP was performed in a Real-Time Turbidimeter and the time threshold (tt) values were yielded in 60 minutes. On DPC, the colonies grown on TCBS Agar was further confirmed by conventional PCR based from gyrB1 gene of Vibrio spp. and toxR gene of V. parahaemolyticus. Virulence property of the isolates were determined by tdh based qLAMP. The detection limit of the qLAMP was 1.2×104 CFU/g in artificially contaminated seafoods. DPC, qLAMP and PMA-qLAMP detected V. parahaemolyticus in 8 (4%), 12 (6%) and 12 (6%) samples, respectively. The CFUs of V. parahaemolyticus detected in qLAMP (5.96±0.10 log10 CFU/ml) and PMAqLAMP (4.71±0.13 log10 CFU/ml) were higher than those of DPC (1.99±0.44 log10 CFU/ml) (P<0.05). The mean tt reduction in PMA treated samples was 1.25±0.38 log10 CFU/sample. The tdh gene was not detected in any of the isolates. In conclusion, the toxR-based PMA-qLAMP method could be an alternative to be used more widely and effective assay for the quantification of live V. parahaemolyticus in seafoods.
Anahtar Kelime:

Deniz ürünlerinde Vibrio parahaemolyticus’un direkt kültür yöntemi, kantitatif ilmiğe dayalı izotermal amplifikasyon ve propidium monoazide-qLAMP ile belirlenmesi

Öz:
Gıda kaynaklı patojenlerin kültür bağımsız yöntemlerle tespitinde en zorlu hususlardan biri ölü ve canlımikroorganizmaların ayırt edilmesidir. Bu çalışmada, deniz ürünlerinde V. parahaemolyticus varlığının direkt kültür yöntemi (DPC)ve toxR bazlı kantitatif ilmiğe dayalı izotermal amplifikasyon (qLAMP) ve canlı-ölü hücre ayrımı için propidium monoazide (PMA)- qLAMP yoluyla belirlenmesi amaçlandı. Akdeniz, Karadeniz ve Ege denizlerini temsil eden balık (n= 100) ve karides (n= 100) olmaküzere toplam 200 örnek, Konya-Türkiye’de bulunan süpermarketler ve balık hallerinden toplandı. Real-Time Turbidimetredegerçekleştirilen qLAMP reaksiyonunda time threshold (tt) değerleri, 60 dakika içinde elde edildi. DPC metodunda TCBS Agar'dagelişen kolonilerde Vibrio spp.’nin doğrulanması için gyrB1 genini, V. parahaemolyticus’un doğrulanması için de toxR geniniamplifiye eden konvansiyonel PCR yöntemi kullanıldı. İzolatların virülans özelliğinin belirlenmesinde tdh bazlı qLAMP kullanıldı.qLAMP'ın deneysel olarak kontamine edilen deniz ürünlerinde tespit limiti 1.2 x 104 CFU/g olarak belirlendi. DPC, qLAMP ve PMA qLAMP yöntemleri ile sırasıyla 8 (%4), 12 (%6) ve 12 (%6) örnekte V. parahaemolyticus tespit edildi. qLAMP (5.96 ± 0.10 log10 KOB/ml) ve PMA-qLAMP (4.71±0.13 log10 KOB/ml) yöntemlerinde tespit edilen V. parahaemolyticus sayılarının DPC yönteminegöre (1.99 ± 0.44 log10 KOB/ml) daha yüksek olduğu gözlemlendi (P<0.05). PMA uygulanan örneklerde ortalama tt azalması, 1.25 ±0.38 log10 KOB/örnek olarak tespit edildi. İzolatların hiçbirinde tdh geni tespit edilmedi. Sonuç olarak; toxR-bazlı PMA-qLAMPyönteminin, deniz ürünlerinde canlı V. parahaemolyticus'un kantitatif tespitinde daha yaygın ve etkin kullanılabilecek alternatif biryöntem olabileceği düşünülmektedir
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. American Public Health Association (APHA) (1992): Standard Methods for the Examination of Water and Waste Water. American Public Health Association, Washington DC, USA.
  • 2. Austin B (2010): Vibrios as causal agents of zoonoses. Vet Microbiol, 140, 310-317.
  • 3. Bates TC, Oliver JD (2004): The viable but nonculturable state of Kanagawa positive and negative strains of Vibrio parahaemolyticus. J Microbiol, 42, 74-79.
  • 4. Cai T, Jiang L, Yang C, et al (2006): Application of realtime PCR for quantitative detection of Vibrio parahaemolyticus from seafood in eastern China. FEMS Immunol Med Microbiol, 46, 180-186.
  • 5. Chao G, Jiao X, Zhou X, et al (2009): Distribution, prevalence, molecular typing, and virulence of Vibrio parahaemolyticus isolated from different sources in coastal province Jiangsu, China. Food Control, 20, 907-912.
  • 6. Chen S, Ge B (2010): Development of a toxR-based loopmediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol, 10, 41.
  • 7. Chen S, Wang F, Beaulieu JC, et al (2011): Rapid detection of viable Salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification (PMA-LAMP). Appl Environ Microbiol, 77, 4008-4016.
  • 8. DePaola A, Ulaszek J, Kaysner CA, et al (2003): Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Appl Environ Microbiol, 69, 3999-4005.
  • 9. Du M, Chen J, Zhang X, et al (2007): Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl Environ Microbiol, 73, 1349-1354.
  • 10. Ducret A, Chabalier M, Dukan S (2014): Characterization and resuscitation of ‘non-culturable’cells of Legionella pneumophila. BMC Microbiol, 14, 3.
  • 11. Fang J, Wu Y, Qu D, et al (2018): Propidium monoazide real‐time loop‐mediated isothermal amplification for specific visualization of viable Salmonella in food. Lett Appl Microbiol, 67, 79-88.
  • 12. Farmer JJ (2005): Genus I. Vibrio pacini 1854. 494-546. In: GM Garrity (Ed), Bergey's Manual of Systematic Bacteriology. Springer, New York.
  • 13. García-Cayuela T, Tabasco R, Peláez C, et al (2009): Simultaneous detection and enumeration of viable lactic acid bacteria and bifidobacteria in fermented milk by using propidium monoazide and real-time PCR. Int Dairy J, 19, 405-409.
  • 14. Han F, Ge B (2010): Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int J Food Microbiol, 142, 60-66.
  • 15. Jones JL, Hara-Kudo Y, Krantz, JA, et al (2012): Comparison of molecular detection methods for Vibrio parahaemolyticus and Vibrio vulnificus. Food Microbiol, 30, 105-111.
  • 16. Kokkinos PA, Ziros PG, Bellou M, et al (2014): Loopmediated isothermal amplification (LAMP) for the detection of Salmonella in food. Food Anal Methods, 7, 512-526.
  • 17. Nagamine K, Hase T, Notomi T (2002): Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 16, 223-229.
  • 18. Nigro OD, Hou A, Vithanage G, et al (2011). Temporal and spatial variability in culturable pathogenic Vibrio spp. in lake Pontchartrain, Louisiana, following Hurricanes Katrina and Rita. Appl Environ Microbiol, 77, 5384-5393.
  • 19. Nocker A, Cheung CY, Camper AK (2006): Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods, 67, 310-320.
  • 20. Notomi T, Okayama H, Masubuchi H, et al (2000): Loopmediated isothermal amplification of DNA. Nucleic Acids Res, 28, e63.
  • 21. Oberbeckmann S, Wichels A, Wiltshire KH, et al (2011): Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle. Antonie Van Leeuwenhoek, 100, 291-307.
  • 22. Okada K, Chantaroj S, Taniguchi T, et al (2010): A rapid, simple, and sensitive loop-mediated isothermal amplification method to detect toxigenic Vibrio cholerae in rectal swab samples. Diagn Microbiol Infect Dis, 66, 135-139. 23. Oliver JD, Kaper JB (2007): Vibrio Species. 343-378. In: MP Doyle, LR Beuchat (Eds), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington DC.
  • 24. Peterson KM (1999): Molecular pathogenesis of Vibrio infections. 157-190. In: JW Carry, JE Linz, D Bhatnagar (Eds), Microbial Foodborne Diseases: Mechanisms of Pathogenesis and Toxin Synthesis. Techomic Publishing, USA.
  • 25. Rawsthorne H, Dock CN, Jaykus LA (2009): PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol, 75, 2936-2939.
  • 26. Ren CH, Hu CQ, Luo P, et al (2009): Sensitive and rapid identification of Vibrio vulnificus by loop-mediated isothermal amplification. Microbiol Res, 164, 514-521.
  • 27. Robert-Pillot A, Copin S, Himber C, et al (2014): Occurrence of the three major Vibrio species pathogenic for human in seafood products consumed in France using realtime PCR. Int J Food Microbiol, 189, 75-81.
  • 28. Rosec JP, Causse V, Cruz B, et al (2012): The international standard ISO/TS 21872–1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR. Int J Food Microbiol, 157, 189-194.
  • 29. Shanthini CF, Kumar PA, Patterson J (2004): Incidence and antibiotic susceptibility of Vibrio parahaemolyticus from sea foods of Tuticorin. Indian J Fish, 51, 43-47.
  • 30. Su YC, Liu C (2007): Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol, 24, 549-558.
  • 31. Sudha S, Divya PS, Francis B, et al (2012): Prevalence and distribution of Vibrio parahaemolyticus in finfish from Cochin (south India). Vet Ital, 48, 269-281.
  • 32. Techathuvanan C, Draughon FA, D'Souza DH (2011): Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments. J Food Prot, 74, 294-301.
  • 33. Teh CSJ, Chua KH, Thong KL (2010): Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes. J Appl Microbiol, 108, 1940-1945.
  • 34. Telli AE, Dogruer Y (2019): Discrimination of viable and dead Vibrio parahaemolyticus subjected to low temperatures using propidium monoazide- quantitative loop mediated isothermal amplification (PMA-qLAMP) and PMA-qPCR. Microb Pathog, 132,109-116.
  • 35. Tomita N, Mori Y, Kanda H, et al (2008): Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc, 3, 877-882.
  • 36. Turkish Statistical Institue (2019): Fishery Statistics. Available at http://www.tuik.gov.tr/PreTablo.do?alt_id=1005. (Accessed March 30, 2019).
  • 37. Wan C, Yang Y, Xu H, et al (2012): Development of a propidium monoazide treatment combined with loop‐ mediated isothermal amplification (PMA‐LAMP) assay for rapid detection of viable Listeria monocytogenes. Int J Food Sci Technol, 47, 2460-2467.
  • 38. Yamazaki W, Ishibashi M, Kawahara R, et al (2008): Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol, 8, 163.
  • 39. Yamazaki W, Kumeda Y, Misawa N, et al (2010): Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species. Appl Environ Microbiol, 76, 820-828.
APA DOGRUER Y (2020). Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. , 349 - 355. 10.33988/auvfd.603868
Chicago DOGRUER YUSUF Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. (2020): 349 - 355. 10.33988/auvfd.603868
MLA DOGRUER YUSUF Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. , 2020, ss.349 - 355. 10.33988/auvfd.603868
AMA DOGRUER Y Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. . 2020; 349 - 355. 10.33988/auvfd.603868
Vancouver DOGRUER Y Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. . 2020; 349 - 355. 10.33988/auvfd.603868
IEEE DOGRUER Y "Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP." , ss.349 - 355, 2020. 10.33988/auvfd.603868
ISNAD DOGRUER, YUSUF. "Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP". (2020), 349-355. https://doi.org/10.33988/auvfd.603868
APA DOGRUER Y (2020). Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(4), 349 - 355. 10.33988/auvfd.603868
Chicago DOGRUER YUSUF Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67, no.4 (2020): 349 - 355. 10.33988/auvfd.603868
MLA DOGRUER YUSUF Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol.67, no.4, 2020, ss.349 - 355. 10.33988/auvfd.603868
AMA DOGRUER Y Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2020; 67(4): 349 - 355. 10.33988/auvfd.603868
Vancouver DOGRUER Y Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2020; 67(4): 349 - 355. 10.33988/auvfd.603868
IEEE DOGRUER Y "Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP." Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67, ss.349 - 355, 2020. 10.33988/auvfd.603868
ISNAD DOGRUER, YUSUF. "Determination of Vibrio parahaemolyticus in seafoods using directplate counting, quantitative loop-mediated isothermal amplificationand propidium monoazide-qLAMP". Ankara Üniversitesi Veteriner Fakültesi Dergisi 67/4 (2020), 349-355. https://doi.org/10.33988/auvfd.603868