Yıl: 2021 Cilt: 23 Sayı: 67 Sayfa Aralığı: 295 - 307 Metin Dili: İngilizce DOI: 10.21205/deufmd.2021236726 İndeks Tarihi: 29-07-2022

Effective Mode Shapes of Viaducts Subjected to High-speed Train

Öz:
The high-speed railways require more viaducts than conventional railways. The dynamic interactioneffect between train and viaduct are important issue due to the risk of derailment, structural safetyand deterioration of the passenger comfort. In this study, viaduct is modelled as a multi-bay frame.The multi-bay frame is modelled by finite element method. The train is idealized as a two-axle systemwith 4 degrees of freedom. The equations of motions of the coupled vehicle-structure system aredetermined via generalized Lagrange's equation. The Wilson-theta time integration method isemployed to determine the dynamic response of the system. The effective mode shapes areinvestigated using 3D frequency-velocity-amplitude graphs. The resonant response has beendetermined at first and second modes of 1 and 2-bay frames.
Anahtar Kelime:

Hızlı Tren Geçişine Maruz Kalan Viyadüklerin Etkin Mod Şekilleri

Öz:
Yüksek hızlı demiryolları, geleneksel demiryollarından daha fazla viyadük gerektirir. Tren ve viyadük arasındaki dinamik etkileşim etkisi, raydan çıkma, yapısal güvenlik ve yolcu konforunun bozulması nedeniyle önemli bir konudur. Bu çalışmada viyadük çok bölmeli bir çerçeve olarak düşünülmüştür. Çok bölmeli çerçeve sonlu elemanlar yöntemi ile modellenmiştir. Tren, 4 serbestlik dereceli iki akslı sistem olarak idealize edilmiştir. Birleştirilmiş araç-yapı sisteminin hareket denklemleri genelleştirilmiş Lagrange denklemi ile belirlenmiştir. Sistemin dinamik yanıtını belirlemek için Wilson-teta zaman integrasyonu yöntemi kullanılmıştır. Etkin mod şekilleri, 3D frekans-hız-genlik grafikleri kullanılarak araştırılmıştır. 1 ve 2 bölmeli çerçevelerin birinci ve ikinci modlarının, yapının rezonans cevabında baskın olduğu belirlenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Su, D., Fujino, Y., Nagayama, T., Hernandez, J. Y., Seki, M. 2010. Vibration of reinforced concrete viaducts under high-speed train passage: Measurement and prediction including trainviaduct interaction, Structures and Infrastructures Engineering, vol. 6, no. 5, pp. 621–633, 2010, DOI: 10.1080/15732470903068888.
  • [2] Lou, P., Dai, G. L., Zeng Q. Y. 2005. Modal coordinate formulation for a simply supported bridge subjected to a moving train modelled as two-stage suspension vehicles, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 219, no. 10, pp. 1027–1040. DOI: 10.1243/095440605X31940.
  • [3] Duan, Y. F., Wang, S. M., Wang, R. Z., Wang, C. Y., Shih, J. Y., Yun, C. B., 2018. Vector Form Intrinsic Finite- Element Analysis for Train and Bridge Dynamic Interaction, Journal of Bridge Engineering, vol. 23, no. 1, pp. 1–15. DOI: 10.1061/(ASCE)BE.1943- 5592.0001171.
  • [4] Hubbell, D., Gauvreau, P. 2018. Frequency Domain Analysis of Train – Guideway Interaction Dynamics, Journal of Structural Engineering, vol. 144, no. 8, pp. 1–11. DOI: 10.1055/s-0035-1570321.
  • [5] Wu, Y. S., Yang, Y.-B. 2003. Steady-state response and riding comfort of trains moving over a series of simply supported bridges, Engineering Structures, vol. 25, no. 2, pp. 251–265. DOI: 10.1016/S0141- 0296(02)00147-5.
  • [6] Youcef, K., Sabiha, El Mostafa, T., D., Ali, D., Bachir, M. 2013. Dynamic analysis of train-bridge system and riding comfort of trains with rail irregularities, Journal of Mechanical Science and Technology, vol. 27, no. 4, pp. 951–962, DOI: 10.1007/s12206-013- 0206-8.
  • [7] Biondi, B., Muscolino, G., Sofi, A. 2005. A substructure approach for the dynamic analysis of train-track-bridge system, Computers and Structures, vol. 83, no. 28-30 SPEC. ISS., pp. 2271– 2281. DOI: 10.1016/j.compstruc.2005.03.036.
  • [8] Xiang, T., Zhao, R., Xu, T. 2007. Reliability Evaluation of Vehicle–Bridge Dynamic Interaction, Journal of Structural Engineering, vol. 133, no. 8, pp. 1092– 1099, 2007. DOI: 10.1061/(ASCE)0733- 9445(2007)133:8(1092).
  • [9] Yang, Y.-B., Yau, J.-D., Hsu, L.-C. 1997. Vibration of simple beams due to trains moving at high speeds, Engineering Structures, vol. 19, no. 11, pp. 936–944. DOI: http://dx.doi.org/10.1016/S0141- 0296(97)00001-1.
  • [10] Lin, C. C., Wang, J. F., Chen, B. L. 2005. Train-Induced Vibration Control of High-Speed Railway Bridges Equipped with Multiple Tuned Mass Dampers, Journal of Bridge Engineering, vol. 10, no. 4, pp. 398–414. DOI: 10.1061/(ASCE)1084- 0702(2005)10:4(398).
  • [11] Demirtas, S., Ozturk, H., Sabuncu, M. 2019. Dynamic Response of Multi-bay Frames Subjected to Successive Moving Forces,” International Journal of Structural Stability and Dynamics, vol. 19, no. 4, pp. 1–24, DOI: 10.1142/S0219455419500421.
  • [12] Bathe, K.-J. 1996 Finite Element Procedures. Prentice Hall, Upper Saddle River, New Jersey.
  • [13] Yang, Y.-B., Chang, C., Yau, J. 1999. An Element for Analysing Vehicle Bridge Systems Considering Vehicle’s Pitching Effect, International Journal for Numerical Methods in Engineering, no. 46, pp. 1031–1047.
APA Demirtaş S, Ozturk H (2021). Effective Mode Shapes of Viaducts Subjected to High-speed Train. , 295 - 307. 10.21205/deufmd.2021236726
Chicago Demirtaş Salih,Ozturk Hasan Effective Mode Shapes of Viaducts Subjected to High-speed Train. (2021): 295 - 307. 10.21205/deufmd.2021236726
MLA Demirtaş Salih,Ozturk Hasan Effective Mode Shapes of Viaducts Subjected to High-speed Train. , 2021, ss.295 - 307. 10.21205/deufmd.2021236726
AMA Demirtaş S,Ozturk H Effective Mode Shapes of Viaducts Subjected to High-speed Train. . 2021; 295 - 307. 10.21205/deufmd.2021236726
Vancouver Demirtaş S,Ozturk H Effective Mode Shapes of Viaducts Subjected to High-speed Train. . 2021; 295 - 307. 10.21205/deufmd.2021236726
IEEE Demirtaş S,Ozturk H "Effective Mode Shapes of Viaducts Subjected to High-speed Train." , ss.295 - 307, 2021. 10.21205/deufmd.2021236726
ISNAD Demirtaş, Salih - Ozturk, Hasan. "Effective Mode Shapes of Viaducts Subjected to High-speed Train". (2021), 295-307. https://doi.org/10.21205/deufmd.2021236726
APA Demirtaş S, Ozturk H (2021). Effective Mode Shapes of Viaducts Subjected to High-speed Train. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 295 - 307. 10.21205/deufmd.2021236726
Chicago Demirtaş Salih,Ozturk Hasan Effective Mode Shapes of Viaducts Subjected to High-speed Train. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23, no.67 (2021): 295 - 307. 10.21205/deufmd.2021236726
MLA Demirtaş Salih,Ozturk Hasan Effective Mode Shapes of Viaducts Subjected to High-speed Train. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.23, no.67, 2021, ss.295 - 307. 10.21205/deufmd.2021236726
AMA Demirtaş S,Ozturk H Effective Mode Shapes of Viaducts Subjected to High-speed Train. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2021; 23(67): 295 - 307. 10.21205/deufmd.2021236726
Vancouver Demirtaş S,Ozturk H Effective Mode Shapes of Viaducts Subjected to High-speed Train. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2021; 23(67): 295 - 307. 10.21205/deufmd.2021236726
IEEE Demirtaş S,Ozturk H "Effective Mode Shapes of Viaducts Subjected to High-speed Train." Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23, ss.295 - 307, 2021. 10.21205/deufmd.2021236726
ISNAD Demirtaş, Salih - Ozturk, Hasan. "Effective Mode Shapes of Viaducts Subjected to High-speed Train". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (2021), 295-307. https://doi.org/10.21205/deufmd.2021236726