Yıl: 2021 Cilt: 23 Sayı: 67 Sayfa Aralığı: 309 - 318 Metin Dili: İngilizce DOI: 10.21205/deufmd.2021236727 İndeks Tarihi: 16-06-2021

Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®

Öz:
Excessive consumption of fossil fuels due to energy demand leads to an increase in the amount of CO2emitted to the environment. Gasification technology enables clean and efficient use of fossil fuels such ascoal, which cause CO2 emissions predominantly. Gasification can be utilized under several atmospheressuch as air, steam, O2/CO2 mixture, etc. The reduction of inert gases (N2) and the increase of COconcentration at high temperatures in syngas provides high-quality gas. Among the commercial gasifiers,entrained flow gasifiers have many advantages such as obtaining tar-free synthesis gas, high carbonconversion efficiency, and production in high capacities. In addition, there is no limitation to the type ofcoal to be used. The performance of the entrained flow gasifiers can be examined by simulation programsand design optimization can be performed at a low cost. This study aims to develop a new entrained flowgasifier model for Turkish Lignite (Çan coal) using the Aspen Plus® thermodynamic simulation programand the effects of various parameters on the synthesis gas were investigated by sensitivity analysis.
Anahtar Kelime:

Çan Kömürü Gazlaştırılmasının Sürüklemeli Akış Gazlaştırıcıda Aspen PLUS® Kullanılarak İncelenmesi

Öz:
Enerji talebi nedeniyle aşırı fosil yakıt tüketimi, çevreye yayılan CO2 miktarında artışa neden olmaktadır. Gazlaştırma teknolojisi, CO2 emisyonuna neden olan kömür gibi fosil yakıtların temiz ve verimli kullanılmasını sağlar. Hava, buhar ve O2/CO2 karışımı gazlaştırma atmosferi olarak kullanılabilir. İnert gazların azaltılması (N2) ve sentez gazında yüksek sıcaklıklarda CO konsantrasyonunun artması yüksek kaliteli gaz elde edilmesine olanak tanır. Ticari gazlaştırıcılar arasında, sürüklemeli gazlaştırıcılarının katransız sentez gazı elde etme, yüksek karbon dönüşüm verimliliği ve yüksek kapasitelerde üretim gibi birçok avantajı bulunmaktadır. Ayrıca, sürüklemeli gazlaştırıcılarda kullanılacak kömür çeşidine bağlı olarak herhangi bir sınırlama yoktur. Sürüklemeli gazlaştırıcılarının performansı genellikle simülasyon programları ile incelenirken, düşük maliyetlerle tasarım ve optimizasyon yapılabilmektedir. Bu çalışmanın amacı Aspen Plus termodinamik simülasyon programını kullanarak Türk Linyitleri (Çan kömürü) için yeni bir sürüklemeli akış gazlaştırıcı modeli geliştirmektir ve gazlaştırıcıya ait çalışma parametrelerinin sentez gazı üzerindeki etkilerini parametrik çalışma yaparak incelemektir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Abokyi, E., Appiah-Konadu, P. 2019."Industrial growth and emissions of CO2 in Ghana: The role of financial development and fossil fuel consumption", Energy reports, 5 1339-1353.
  • 2. Acharya, B., Dutta, A.Basu, P. 2010."An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO", International journal of hydrogen energy, 35(4), 1582-1589.
  • 3. Adnan, M.A.Hossain, M.M. 2018."Gasification performance of various microalgae biomass–A thermodynamic study by considering tar formation using Aspen plus", Energy conversion and management, 165 783-793.
  • 4. AlNouss, A., McKay, G.Al-Ansari, T. 2020."A comparison of steam and oxygen fed biomass gasification through a techno-economicenvironmental study", Energy conversion and management, 208 112612.
  • 5. Cao, Y., Wang, Q. 2019."Oxygen-enriched air gasification of biomass materials for high-quality syngas production", Energy conversion and management, 199 111628.
  • 6. Couto, N., Rouboa, A. 2013."Influence of the biomass gasification processes on the final composition of syngas", Energy procedia, 36 596-606.
  • 7. Couto, N.D., Silva, V.B. 2015."Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices", Energy, 93 864-873.
  • 8. Dou, B.Song, Y. 2010."A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor", International journal of hydrogen energy, 35(19), 10271-10284.
  • 9. Fernandez-Lopez, M., Pedroche, J. 2017."Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®", Energy conversion and management, 140 211-217.
  • 10. Giuffrida, A., Romano, M.C.Lozza, G. 2011."Thermodynamic analysis of air-blown gasification for IGCC applications", Applied energy, 88(11), 3949-3958.
  • 11. Gu, H., Tang, Y. 2019."Study on biomass gasification under various operating conditions", Journal of the energy institute, 92(5), 1329-1336.
  • 12. Guo, F., Dong, Y. 2014."Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study", International journal of hydrogen energy, 39(11), 5625-5633.
  • 13. Han, L., Wang, Q. 2011."Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed", International journal of hydrogen energy, 36(8), 4820-4829.
  • 14. Hejazi, B.Grace, J.R. 2020."Simulation of tar-free biomass syngas enhancement in a calcium looping operation using Aspen Plus built-in fluidized bed model", International journal of greenhouse gas control, 99 103096.
  • 15. Higman, C. State of the gasification industry: worldwide gasification database 2014 update. in Gasification Technologies Conference Washington, DC. 2014.
  • 16. Higman, C.Tam, S. 2013."Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels", Chemical reviews, 114(3), 1673-1708.
  • 17. Jackson, R.W., Neto, A.B.F.Erfanian, E. 2018."Woody biomass processing: Potential economic impacts on rural regions", Energy policy, 115 66-77.
  • 18. Kern, S., Pfeifer, C.Hofbauer, H. 2013."Gasification of lignite in a dual fluidized bed gasifier—Influence of bed material particle size and the amount of steam", Fuel processing technology, 111 1-13.
  • 19. Kibria, M., Sripada, P.Bhattacharya, S. 2020."Steady state kinetic model for entrained flow CO2 gasification of biomass at high temperature", Energy, 196 117073.
  • 20. Ku, X., Li, T.Løvås, T. 2014."Eulerian–Lagrangian simulation of biomass gasification behavior in a hightemperature entrained-flow reactor", Energy & fuels, 28(8), 5184-5196.
  • 21. Lan, W., Chen, G. 2018."Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS", Science of the total environment, 628 1278-1286.
  • 22. Leijenhorst, E.J., Assink, D. 2015."Entrained flow gasification of straw-and wood-derived pyrolysis oil in a pressurized oxygen blown gasifier", Biomass and bioenergy, 79 166-176.
  • 23. Marcantonio, V., Bocci, E. 2020."Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus", International journal of hydrogen energy, 45(11), 6651-6662.
  • 24. Materazzi, M., Lettieri, P. 2013."Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification", Fuel, 108 356-369.
  • 25. Motta, I.L., Miranda, N.T. 2018."Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects", Renewable and sustainable energy reviews, 94 998-1023.
  • 26. Mularski, J., Pawlak-Kruczek, H.Modlinski, N. 2020."A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics", Fuel, 271 117620.
  • 27. Nayır, T., Kömür Ve Biyokütle Karışımlarının Gazlaştırılması Ve Aspen Hysys® Programı İle Simulasyonu. 2012, Fen Bilimleri Enstitüsü.
  • 28. Niu, M., Huang, Y. 2013."Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus", Industrial & engineering chemistry research, 52(42), 14768- 14775.
  • 29. Okolie, J.A., Nanda, S. 2020."A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas", Renewable and sustainable energy reviews, 119 109546.
  • 30. Özveren, U., Theoretical and experimental investigation of biomass and coal gasification, in Chemical Engineering. 2013, Marmara University: Istanbul.
  • 31. Pala, L.P.R., Wang, Q. 2017."Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model", Renewable energy, 101 484-492.
  • 32. Palma, C.F. 2013."Modelling of tar formation and evolution for biomass gasification: A review", Applied energy, 111 129-141.
  • 33. Paul, T.R., Nath, H. 2020."Gasification studies of high ash Indian coals using Aspen plus simulation", Materials today: proceedings.
  • 34. Pauls, J.H., Mahinpey, N.Mostafavi, E. 2016."Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using Aspen Plus: A comprehensive model including pyrolysis, hydrodynamics and tar production", Biomass and bioenergy, 95 157-166.
  • 35. Puig-Gamero, M., Argudo-Santamaria, J. 2018."Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis", Energy conversion and management, 177 416-427.
  • 36. Qin, S., Chang, S.Yao, Q. 2018."Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers", Applied energy, 229 413-432.
  • 37. Safarian, S.Unnthorsson, R. 2018."An assessment of the sustainability of lignocellulosic bioethanol production from wastes in Iceland", Energies, 11(6), 1493.
  • 38. Sahoo, B.B., Sahoo, N.Saha, U.K. 2012."Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation", Applied thermal engineering, 49 139-146.
  • 39. Shayan, E., Zare, V.Mirzaee, I. 2018."Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents", Energy conversion and management, 159 30-41.
  • 40. Situmorang, Y.A., Zhao, Z. 2020."Small-scale biomass gasification systems for power generation (< 200 kW class): A review", Renewable and sustainable energy reviews, 117 109486.
  • 41. Song, Y., Feng, J. 2013."Impact of biomass on energy and element utilization efficiency during cogasification with coal", Fuel processing technology, 115 42-49.
  • 42. Tauqir, W., Zubair, M.Nazir, H. 2019."Parametric analysis of a steady state equilibrium-based biomass gasification model for syngas and biochar production and heat generation", Energy conversion and management, 199 111954.
  • 43. Ünlü, A., Kayahan, U. 2017."Pilot scale entrained flow gasification of Turkish lignites", Journal of the energy institute, 90(1), 159-165.
  • 44. Xu, S., Ren, Y. 2014."Development of a novel 2-stage entrained flow coal dry powder gasifier", Applied energy, 113 318-323.
  • 45. Xu, T., Pisupati, S.V.Bhattacharya, S. 2019."Comparison of entrained flow CO2 gasification behaviour of three low-rank coals–Victorian brown coal, Beulah lignite, and Inner Mongolia lignite", Fuel, 249 206-218.
APA Kartal F, Cingisiz Ş, ÖZVEREN U (2021). Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. , 309 - 318. 10.21205/deufmd.2021236727
Chicago Kartal Furkan,Cingisiz Şebnem,ÖZVEREN Uğur Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. (2021): 309 - 318. 10.21205/deufmd.2021236727
MLA Kartal Furkan,Cingisiz Şebnem,ÖZVEREN Uğur Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. , 2021, ss.309 - 318. 10.21205/deufmd.2021236727
AMA Kartal F,Cingisiz Ş,ÖZVEREN U Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. . 2021; 309 - 318. 10.21205/deufmd.2021236727
Vancouver Kartal F,Cingisiz Ş,ÖZVEREN U Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. . 2021; 309 - 318. 10.21205/deufmd.2021236727
IEEE Kartal F,Cingisiz Ş,ÖZVEREN U "Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®." , ss.309 - 318, 2021. 10.21205/deufmd.2021236727
ISNAD Kartal, Furkan vd. "Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®". (2021), 309-318. https://doi.org/10.21205/deufmd.2021236727
APA Kartal F, Cingisiz Ş, ÖZVEREN U (2021). Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 309 - 318. 10.21205/deufmd.2021236727
Chicago Kartal Furkan,Cingisiz Şebnem,ÖZVEREN Uğur Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23, no.67 (2021): 309 - 318. 10.21205/deufmd.2021236727
MLA Kartal Furkan,Cingisiz Şebnem,ÖZVEREN Uğur Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.23, no.67, 2021, ss.309 - 318. 10.21205/deufmd.2021236727
AMA Kartal F,Cingisiz Ş,ÖZVEREN U Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2021; 23(67): 309 - 318. 10.21205/deufmd.2021236727
Vancouver Kartal F,Cingisiz Ş,ÖZVEREN U Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2021; 23(67): 309 - 318. 10.21205/deufmd.2021236727
IEEE Kartal F,Cingisiz Ş,ÖZVEREN U "Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®." Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23, ss.309 - 318, 2021. 10.21205/deufmd.2021236727
ISNAD Kartal, Furkan vd. "Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (2021), 309-318. https://doi.org/10.21205/deufmd.2021236727