Yıl: 2020 Cilt: 23 Sayı: 4 Sayfa Aralığı: 1213 - 1218 Metin Dili: İngilizce DOI: 10.2339/politeknik.616293 İndeks Tarihi: 17-06-2021

Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery

Öz:
Nowadays cardiovascular diseases (CVDs), mostly coronary artery diseases become a leading cause of death. Flow dynamics of a vessel is important to diagnose a CVD in advance. However, hemodynamic parameters may not be measured directly. Hence, computational methods are increasingly being used in the fields of neurosurgery and cardiovascular surgery to obtain realistic physiological simulations. In this study, a patient specific thoracic artery model is first segmented based on the MRI images and then a thoracic aneurysm disease model is simulated to assess blood flow changes under the predefined conditions.
Anahtar Kelime:

Hesaplamalı akışkanlar dinamiği simülasyonlarına dayalı hastaya özel kardiyovasküler hastalık modellemesi: torasik arterin segmentasyonu ve hemodinamik modeli

Öz:
Günümüzde kardiyovasküler hastalıklar, çoğunlukla koroner arter hastalıkları önde gelen ölüm nedenleri arasında bulunmaktadır. Bir arterdeki mevut akış dinamiği, kardiyovasküler bir rahatsızlığın önceden teşhis edilebilmesinde büyük önem taşımaktadır. Bununla birlikte, hemodinamik parametreler, doğrudan ölçülemediği için, gerçekçi fizyolojik simülasyonlar elde edilmesinde beyin ve kalp damar cerrahisi alanlarında hesaplamalı yöntemler oldukça yaygın bir şekilde kullanılmaktadır. Bu çalışmada, hastaya özgü bir torasik arter modelinin, MRI görüntüleri temelli segmentasyonu gerçekleştirilerek, bu model üzerinde önceden tanımlanmış koşullar altında kan akışı değişikliklerini değerlendirmek üzere bir torasik anevrizma hastalığı simüle edilmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] who.int/news-room/fact-sheets/detail/cardiovasculardiseases-(cvds), “WHO, Fact Sheets”, (08.12.2019).
  • [2] ehnheart.org/cvd-statistics.html, “European Cardiovascular Disease Statistics, CVD Statistics”, (08.12.2019).
  • [3] heart.org/-/media/data-import/downloadables/heartdisease-and-stroke-statistics-2018---at-a-glanceucm_498848.pdf, “American Heart Association, Heart Disease And Stroke Statistics”, (08.12.2019).
  • [4] Mohammed Y., “Three dimensional finite-element modeling of blood flow in elastic vessels: effects of arterial geometry and elasticity on aneurysm growth and rupture”, Master thesis, Ryerson University, Toronto, Canada, (2010).
  • [5] Canstein C. et al., “3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries”, Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 59(3): 535-546, (2008).
  • [6] Van Pelt R., Nguyen H., Ter Haar Romeny B., Vilanova A., “Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements”, International Journal of Computer Assisted Radiology and Surgery, 7(2): 217-224, (2012).
  • [7] Howe G., “Multiphysics simulation of a coronary artery”, Master thesis, Faculty of California Polytechnic State University, San Luis Obispo, (2013).
  • [8] Secomb T.W., “Hemodynamics,” Comprehensive Physiology, 6(2): 975-1003, (2011).
  • [9] Zarandi M.M., Mongrain R., Bertrand O.F., “Nonnewtonian hemodynamics and shear stress distribution in three dimensional model of healthy and stented coronary artery bifurcation”, Comsol Conference, Boston, 1-5, (2010).
  • [10] Tado R., Deoghare A. B., Pandey K. M., “Computational Study of Blood Flow Analysis for Coronary Artery Disease”, International Journal of Biomedical and Biological Engineering, 12(2): 35-39, (2018).
  • [11] Ohhara Y. et al., “Investigation of blood flow in the external carotid artery and its branches with a new 0D peripheral model”, Biomedical Engineering Online, 15(1): 16, (2016).
  • [12] Takizawa K. et al., “Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent”, Computational Mechanics, 50(6): 675-686, (2012).
  • [13] Fishman E.K., Kuszyk B.S., Heath D.G., Cabral B.., “Surgical planning for liver resection”, Computer, 29(1): 64-72, (1996).
  • [14] Taylor C.A., Hughes T.J.R., Zarins C.K., “Finite element modeling of blood flow in arteries”, Computer Methods in Applied Mechanics and Engineering, 158(1-2): 155- 196, (1998).
  • [15] Bai-Nan X. et al., “Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms”, Neurosurgical Review, 34(1): 39-47, 2011.
  • [16] heart.org/en/health-topics/high-bloodpressure/understanding-blood-pressure-readings, “Heart, Understanding Blood Pressure Readings, Healthy and unhealthy blood pressure ranges”, (08.12.2019).
  • [17] Laín S., Caballero A. D., “Simulation of unsteady blood flow dynamics in the thoracic aorta”, Ingeniería e Investigación, 37(3): 92-101, (2017).
  • [18] Wain A.J.R. et al., “Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study”, Journal Of Plastic, Reconstructive & Aesthetic Surgery, 67(7): 951-959, (2014).
  • [19] itis.swiss/virtual-population/tissueproperties/database/heat-capacity, “It Is Foundation, Tissue Properties”, (08.12.2019).
  • [20] itis.swiss/virtual-population/tissueproperties/database/thermal-conductivity, “It Is Foundation, Tissue Properties”, (08.12.2019).
  • [21] Prieto E.S., “Computational fluid dynamics indicators to improve cardiovascular pathologies”, Doctoral thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, (2016).
  • [22] Aydin L. et al., “Surgical Planning And Additive Manufacturing Of An Anatomical Model: A Case Study Of A Spine Surgery”, Medical Robotics - New Achievements, IntechOpen, DOI: 10.5772/intechopen.89950, (2019).
  • [23] Liu X., et al., “Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures”, Biomechanics And Modeling In Mechanobiology, 15(6): 1439-1456, (2016).
  • [24] Randles A., Frakes D., Leopold J., Jane A., “Computational fluid dynamics and additive manufacturing to diagnose and treat cardiovascular disease”, Trends In Biotechnology, 35(11): 1049-1061, (2017).
  • [25] Aydin L. et al., “Development And Biomechanical Validation Of Medical Insoles To Prevent Foot Ulcers On Diabetic Patients By Means Of Thermoplastic Elastomers And Additive Manufacturing Technologies”, Medical Technologies Congress (TIPTEKNO), IEEE, 1-4, (2019).
  • [26] Zaucha M. et al., “Biaxial biomechanical properties of self-assembly tissue-engineered blood vessels”, Journal Of The Royal Society İnterface, 8(55): 244-256, (2010).
  • [27] Deep D., “A study of blood flow in normal and dilated aorta”, PhD. Thesis, Purdue University, Indiana, (2014).
  • [28] Caballero A.D., Laín S. A., “Review On Computational Fluid Dynamics Modelling In Human Thoracic Aorta”, Cardiovascular Engineering And Technology, 4(2): 103-130, (2013).
  • [29] Hyman J., Knapp R., Scovel J., “High order finite volume approximations of differential operators on nonuniform grids”, Physica D: Nonlinear Phenomena, 60(1-4): 112- 138, (1992).
  • [30] Nerem R., “Vascular fluid mechanics, the arterial wall, and atherosclerosis”, Journal Of Biomechanical Engineering, 114(3): 274-282, (1992).
  • [31] Nataf P., Lansac E., “Dilation of the thoracic aorta: medical and surgical management”, Heart, 92(9): 1345- 1352, (2006).
  • [32] Fung G. et al., “On stent-graft models in thoracic aortic endovascular repair: a computational investigation of the hemodynamic factors”, Computers In Biology And Medicine, 38(4): 484-489, (2008).
  • [33] European Commission, “Research And Innovation In Digital Solutions For Health, Wellbeing And Ageing - An Overview”, Digital Single Market - Technical Report, 1- 94, (2019).
APA AYDIN L, KUCUK S, CAKIR O (2020). Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. , 1213 - 1218. 10.2339/politeknik.616293
Chicago AYDIN LEVENT,KUCUK Serdar,CAKIR Ozgur Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. (2020): 1213 - 1218. 10.2339/politeknik.616293
MLA AYDIN LEVENT,KUCUK Serdar,CAKIR Ozgur Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. , 2020, ss.1213 - 1218. 10.2339/politeknik.616293
AMA AYDIN L,KUCUK S,CAKIR O Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. . 2020; 1213 - 1218. 10.2339/politeknik.616293
Vancouver AYDIN L,KUCUK S,CAKIR O Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. . 2020; 1213 - 1218. 10.2339/politeknik.616293
IEEE AYDIN L,KUCUK S,CAKIR O "Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery." , ss.1213 - 1218, 2020. 10.2339/politeknik.616293
ISNAD AYDIN, LEVENT vd. "Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery". (2020), 1213-1218. https://doi.org/10.2339/politeknik.616293
APA AYDIN L, KUCUK S, CAKIR O (2020). Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. Politeknik Dergisi, 23(4), 1213 - 1218. 10.2339/politeknik.616293
Chicago AYDIN LEVENT,KUCUK Serdar,CAKIR Ozgur Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. Politeknik Dergisi 23, no.4 (2020): 1213 - 1218. 10.2339/politeknik.616293
MLA AYDIN LEVENT,KUCUK Serdar,CAKIR Ozgur Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. Politeknik Dergisi, vol.23, no.4, 2020, ss.1213 - 1218. 10.2339/politeknik.616293
AMA AYDIN L,KUCUK S,CAKIR O Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. Politeknik Dergisi. 2020; 23(4): 1213 - 1218. 10.2339/politeknik.616293
Vancouver AYDIN L,KUCUK S,CAKIR O Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery. Politeknik Dergisi. 2020; 23(4): 1213 - 1218. 10.2339/politeknik.616293
IEEE AYDIN L,KUCUK S,CAKIR O "Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery." Politeknik Dergisi, 23, ss.1213 - 1218, 2020. 10.2339/politeknik.616293
ISNAD AYDIN, LEVENT vd. "Patient specific cardiovascular disease modelling based on the computational fluid dynamics simulations: segmentation and hemodynamic model of a thoracic artery". Politeknik Dergisi 23/4 (2020), 1213-1218. https://doi.org/10.2339/politeknik.616293