Yıl: 2016 Cilt: 19 Sayı: 2 Sayfa Aralığı: 115 - 128 Metin Dili: Türkçe DOI: 10.2339/2016.19.2 115-128 İndeks Tarihi: 20-06-2021

Nano Beynitik Çelikler

Öz:
Bu çalışmada, son yıllarda geliştirilen nano beynitik çelikler detaylı literatür araştırması yapılarak incelenmiştir. Fe-C alaşımlarındaöstenitten beynite dönüşüm ile ilgili araştımalar artarak devam etmektedir. Sunulan bu çalışmada nano beynitik çeliklerin kimyasalkompozisyonları, üretimi, mikroyapı ve mekanik özellikleri verilerek dönüşüm mekanizmaları incelenmiştir. Nano beynitikçelikler pahalı alaşım elementleri ve mekanik işlemlere gerek kalmadan, yüksek mekanik özelliklerde (dayanım, sertlik, kırılmatokluğu vb.) üretilebilmektedirler. Nano beynitik çelikler, basit ısıl işlemlerle düşük maliyetle üretilebilmekte olup, zırh çeliklerive maryaşlandırma çeliklerine alternatif olmasından dolayı bilim ve endüstride büyük öneme sahiptirler.
Anahtar Kelime:

Nano Bainitic Steels

Öz:
In this study, nano bainitic steels examined which were developed recent years with respect to detailed literature survey. Researches are increasingly continuing related to transformation of austenite to bainite in Fe-C alloys. In the presented study, chemical compositions, production, microstructures and mechanical properties of nano bainitic steels are provided and the transformation mechanisms are also investigated. Nano bainitic steels having higher mechanical properties (strength, hardness, fracture toughness etc.) can be produced by without expensive alloying elements and mechanical treatments. Nano bainitic steels can be obtained by simple heat treatments with low cost. Moreover it is alternative to armor steels and maraging steels hence has great importance of science and industry.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Krauss, G. Steels: Processing, Structure, and Performance, ASM International, (2005).
  • 2. Bhadeshia, H.K.D.H. Bainite in Steels, Institute of Metals, UK, (1992).
  • 3. Sinha, A. K. Ferrous Physical Metallurgy, Butterworth, USA, (1989).
  • 4. Smith W.F. (Çev.: Erdoğan, M.) Mühendislik Alaşımlarının Yapı ve Özellikleri, Nobel Yayın, Ankara, (2000).
  • 5. Caballero, F.G., Bhadeshia, H.K.D.H., Mawella, K.J.A., Jones, D.G., & Brown, P. Very Strong Low Temperature Bainite, Materials Science and Technology, 18(3): 279- 284, (2002).
  • 6. Callister, W.D.,& Rethwisch, D.G. Materials Science and Engineering: An Introduction, Wiley, New York, USA, (2007).
  • 7. Bhadeshia, H.K.D.H.& Honeycombe, R. Steels: Microstructure and Properties, 3rd edition, ButterworthHeinemann, USA, (2006).
  • 8. Davis, J. R., Mills, K. M., & Lampman, S. R. Metals Handbook. vol. 1. Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International, Materials Park, Ohio, USA, (1990).
  • 9. Bhadeshia, H.K.D.H. The first bulk nano structured metal, Science and Technology of Advanced Materials, 14(1): 1-7, (2013).
  • 10. Edmonds, D., Matlock, D., & Speer, J. The Recent Development of Steels with Carbide-Free Acicular Microstructures Containing Retained Austenite, La Metallurgia Italiana, 1: 41-49, (2011).
  • 11. Bhadeshia, H.K.D.H. Bulk nano crystalline steel, Ironmaking & Steelmaking, 32(5): 405-410, (2005).
  • 12. Caballero, F.G., Miller, M.K., Garcia-Mateo, C., & Cornide, J. New experimental evidence of the diffusionless transformation nature of bainite, Journal of Alloys and Compounds, 577: 626-630, (2013).
  • 13. Caballero, F.G.,& Bhadeshia, H.K.D.H. Very strong bainite, Current Opinion in Solid State and Materials Science, 8(3): 251-257, (2004).
  • 14. Bhadeshia, H. K. D. H. Hard Bainite, Solid Solid Phase Transformations, 1: 469-484, (2005).
  • 15. Caballero, F.G., Allain, S., Cornide, J., Velásquez, J.P., Garcia-Mateo, C., & Miller, M.K. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application, Materials & Design, 49: 667-680, (2013).
  • 16. Beladi, H., Adachi, Y., Timokhina, I., & Hodgson, P. D. Crystallographic analysis of nano bainitic steels, Scripta Materialia, 60(6): 455-458, (2009).
  • 17. Chen, X., & Vuorinen, E. In situ x-ray observation of bainitic transformation of austempered silicon alloyed steel, Journal of Materials Research, 24(04): 1559-1566, (2009).
  • 18. Bhadeshia, H.K.D.H. Nanostructured Bainite, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 466, 3-18, (2010).
  • 19. Caballero, F. G., Miller, M.K., & Garcia-Mateo, C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel, Acta Materialia, 58(7): 2338-2343, (2010).
  • 20. Cornide, J., Garcia-Mateo, C., Capdevila, C., & Caballero, F.G. An assessment of the contributing factors to the nano scale structural refinement of advanced bainitic steels, Journal of Alloys and Compounds, 577: 43-47, (2013).
  • 21. Wang, Y.H., Zhang, F.C., & Wang, T.S. A novel bainitic steel comparable to maraging steel in mechanical properties. Scripta Materialia, 68(9): 763-766, (2013).
  • 22. Rose, A.J., Mohammed, F., Smith, A.W.F., Davies, P.A., & Clarke, R.D. Superbainite: Laboratory Concept to Commercial Product, Materials Science and Technology, 30(9): 1094-1098, (2014).
  • 23. Cruz Junior, J.A.,& Santos, D.B. Effect of tempering temperature on isothermal decomposition product formed below Ms, Journal of Materials Research and Technology, 2(2): 93-99, (2013).
  • 24. Hofer, C., Leitner, H., Winkelhofer, F., Clemens, H., & Primig, S. Structural characterization of carbide-free bainite in a Fe–0.2 C–1.5 Si–2.5 Mn steel, Materials Characterization, 102: 85-91, (2015).
  • 25. Zhang, X., Xu, G., Wang, X., Embury, D., Bouaziz, O., Purdy, G. R., & Zurob, H.S. Mechanical Behavior of Carbide-free Medium Carbon Bainitic Steels, Metallurgical and Materials Transactions A, 45(3): 1352-1361, (2014).
  • 26. Timokhina, I. B., Beladi, H., Xiong, X.Y., Adachi, Y., & Hodgson, P.D. Nanoscale microstructural characterization of a nanobainitic steel, Acta Materialia, 59(14): 5511- 5522, (2011).
  • 27. Rakha, K., Beladi, H., Timokhina, I., Xiong, X., Kabra, S., Liss, K.D., & Hodgson, P. (2014). On low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography, Materials Science and Engineering A, 589: 303-309.
  • 28. Martis, C.J., Putatunda, S.K., Boileau, J., & Spray, J.G. The static and dynamic mechanical properties of a new low-carbon, low-alloy austempered steel, Materials Science and Engineering A, 589: 280-287, (2014).
  • 29. Long, X.Y., Kang, J., Lv, B., & Zhang, F.C. Carbide-free bainite in medium carbon steel, Materials & Design, 64: 237-245, (2014).
  • 30. Kim, K.H., & Lee, J. S. On microstructure and properties of Si modified 100Cr6 bearing steels. Materials Science and Technology, 28(1): 50-54, (2012).
  • 31. Jezierska, E., Dworecka, J., & Rożniatowski, K. Nanobainitic Structure Recognition and Characterizatıon using Transmission Electron Microscopy, Archives of Metallurgy and Materials, 59(4): (2014).
  • 32. Yoozbashi, M.N., & Yazdania, S. Acceleration of Bainitic Transformation in Nanostructured, Low Temperature Bainitic Steels by Using of Thermodynamic Model, Solid State Phenomena, 172: 214-220, (2011).
  • 33. Mandal, D., Ghosh, M., Pal, J., De, P.K., Chowdhury, S.G., Das, S.K., Das, G., & Ghosh, S. Effect of austempering treatment on microstructure and mechanical properties of high-Si steel, Journal of Materials Science, 44(4): 1069-1075, (2009).
  • 34. Caballero, F.G., Chao, J., Cornide, J., García-Mateo, C., Santofimia, M.J., & Capdevila, C. Toughness deterioration in advanced high strength bainitic steels, Materials Science and Engineering A, 525(1): 87-95, (2009).
  • 35. Sourmail, T., Caballero, F.G., Garcia-Mateo, C., Smanio, V., Ziegler, C. Kuntz, M., Elvira, R., Leiro, A., Vuorinen, E., Teeri, T., Evaluation of potential of high Si high C steel nano structured bainite for wear and fatigue applications, Materials Science and Technology, 29(10): 1166-1173, (2013).
  • 36. Sidhu, G., Bhole, S.D., Essadiqi, E., Chen, D.L. (2013). Characterization of Isothermally Heat-Treated High Carbon Nano bainitic Steels, Journal of Materials Engineering and Performance, 22(10): 3070-3076.
  • 37. Hulme-Smith, C.N., Lonardelli, I., Peet, M.J., Dippel, A.C., Bhadeshia, H.K.D.H. Enhanced thermal stability in nano structured bainitic steel, Scripta Materialia, 191- 194, (2013).
  • 38. Garcia-Mateo, C., Caballero, F.G., & Bhadeshia, H.K.D.H. Acceleration of low-temperature bainite, ISIJ International, 43(11): 1821-1825, (2003).
  • 39. Garcia-Mateo, C., Caballero, F.G., Sourmail, T., Kuntz, M., Cornide, J., Smanio, V., & Elvira, R. Tensile behaviour of a nano crystalline bainitic steel containing 3wt% silicon, Materials Science and Engineering A, 549: 185-192, (2012).
  • 40. Yang, J., Wang, T. S., Zhang, B., & Zhang, F. C. Microstructure and mechanical properties of high-carbon Si–Al-rich steel by low-temperature austempering, Materials & Design, 35: 170-174, (2012).
  • 41. Avishan, B., Yazdani, S., & Nedjad, S.H. Toughness variations in nanostructured bainitic steels. Materials Science and Engineering A, 548: 106-111, (2012).
  • 42. Mohamed Y. Sherif, Characterisation and Development of Nano structured, Ultrahigh Strength, and Ductile Bainitic Steels, Ph.D.Thesis, (2006).
  • 43. Garcia-Mateo, C., Sourmail T., Caballero F.G., Smanio V., Kuntz M., Ziegler C., Leiro A., Vuorinen E., Elvira R., and Teeri T. Nanostructured Steel Industrialisation: Plausible Reality, Materials Science and Technology, 30(9): 1071-1078, (2014).
  • 44. Amey, C.M., Huang H., and Rivera-Díaz-del-Castillo P.E.J. Distortion in 100Cr6 and nano structured bainite. Materials&Design, 35: 66-71, (2012)
  • 45. Avishan, B., Garcia-Mateo, C., Yazdani, S., & Caballero, F.G. Retained austenite thermal stability in a nanostructured bainitic steel, Materials Characterization, 81: 105-110, (2013).
  • 46. Caballero, F. G., Miller, M.K., Garcia-Mateo, C., Capdevila, C., & Babu, S.S. Redistribution of alloying elements during tempering of a nanocrystalline steel, Acta Materialia, 56(2): 188-199, (2008).
  • 47. Caballero, F.G., Miller, M.K., Garcia-Mateo, C., Cornide, J., & Santofimia, M.J. Temperature dependence of carbon supersaturation of ferrite in bainitic Steels, Scripta Materialia, 67(10): 846-849, (2012).
  • 48. Zhang, M., Wang T.S., Wang Y.H., Yang J., and Zhang F.C. Preparation of nano structured bainite in mediumcarbon alloy steel. Materials Science and Engineering A, 568: 123-126, (2013).
  • 49. Kong, D., Liu, Q., and Yuan L. Effect of Austenitizing Temperature on Formation of Hard Bainite, Metal Science and Heat Treatment, 56(7-8): 444-448, (2014).
  • 50. Lonardelli, I., Bortolotti, M., Van Beek, W., Girardini, L., Zadra, M., & Bhadeshia, H.K.D.H. Powder metallurgical nanostructured medium carbon bainitic steel: Kinetics, structure, and in situ thermal staselam bility studies, Materials Science and Engineering A, 555: 139-147, (2012).
  • 51. Lonardelli, I., Girardini, L., Maines, L., Menapace, C., Molinari, A., & Bhadeshia, H.K.D.H. Nano structured bainitic steel obtained by powder metallurgy approach: structure, transformation kinetics and mechanical properties, Powder Metallurgy, 55(4): 256-259, (2012).
  • 52. Van Bohemen, S.M.C., Santofimia, M.J., & Sietsma, J. Experimental evidence for bainite formation below M s in Fe–0.66 C, Scripta Materialia, 58(6): 488-491, (2008).
  • 53. Kolmskog, P., Borgenstam, A., Hillert, M., Hedström, P., Babu, S. S., Terasaki, H., & Komizo, Y. I. Direct Observation that Bainite can Grow Below Ms, Metallurgical and Materials Transactions A, 43(13): 4984-4988, (2012).
  • 54. da Silva, E.P., Xu, W., Föjer, C., Houbaert, Y., Sietsma, J., & Petrov, R.H. Phase transformations during the decomposition of austenite below Ms in a low-carbon steel, Materials Characterization, 95: 85-93, (2014).
  • 55. Garcia-Mateo, C., Caballero, F.G., Miller, M.K., & Jiménez, J.A. On measurement of carbon content in retained austenite in a nanostructured bainitic steel. Journal of Materials Science, 47(2): 1004-1010, (2012).
  • 56. Leiro, A., Vuorinen, E., Sundin, K.G., Prakash, B., Sourmail, T., Smanio, V. Caballero, F.G., Garcia-Mateo, C., Elvira, R. Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions, Wear, 298: 42- 47, (2013).
  • 57. Avishan, B., Garcia-Mateo, C., Morales-Rivas, L., Yazdani, S., & Caballero, F.G. Strengthening and mechanical stability mechanisms in nanostructured bainite. Journal of Materials Science, 48(18): 6121- 6132, (2013).
  • 58. Wang, X.L., Wu, K.M., Hu, F., Yu, L., Wan, X.L. Multistep isothermal bainitic transformation in medium-carbon steel. Scripta Materialia, 74: 56-59, (2014).
  • 59. Garcia-Mateo, C., Caballero, F.G., & Bhadeshia, H.K.D.H. Mechanical properties of low-temperature bainite, Materials Science Forum, 500: 495-502, (2005).
  • 60. DasBakshi, S., P. H. Shipway, and H.K.D.H. Bhadeshia Three-body abrasive wear of fine pearlite, nano structured bainite and martensite, Wear, 308(1): 46-53, (2013).
  • 61. Fang, K., Yang, J.G., Liu, X.S., Song, K.J., Fang, H.Y., & Bhadeshia, H.K.D.H. Regeneration technique for welding nano structured bainite, Materials& Design, 50: 38-43, (2013).
  • 62. Kazum, O., Kannan, M.B., Beladi, H., Timokhina, I., Hodgson, P., & Khoddam, S. Selective Dissolution of Retained Austenite in Nano structured Bainitic Steels, Advanced Engineering Materials, 16(4): 442-444, (2014).
  • 63. Kazum, O., Kannan, M. B., Beladi, H., Timokhina, I. B., Hodgson, P. D., & Khoddam, S. Aqueous corrosion performance of nanostructured bainitic steel. Materials & Design, 54: 67-71, (2014).
  • 64. Chen, X., & Li, Y. Effects of Ti, V, and rare earth on the mechanical properties of austempered high silicon cast steel, Metallurgical and Materials Transactions A, 37(11): 3215-3220, (2006).
  • 65. Bhadeshia, H.K.D.H. Properties of fine-grained steels generated by displacive transformation, Materials Science and Engineering A, 481: 36-39, (2008).
  • 66. Bleck, Wolfgang, and Florian Gerdemann, Improved mechanical properties by control of bainite transformation, Materials and Manufacturing Processes, 43-50, (2011).
  • 67. Cruz Junior, J.A., Rodrigues, T.F.M., Viana, V.D.C., Abreu, H., & Santos, D.B. Influence of temperature and time of austempering treatment on mechanical properties of SAE 9254 commercial steel, Steel Research International, 83(1): 22-31, (2012).
  • 68. Rementeria, R., Morales-Rivas, L., Kuntz, M., GarciaMateo, C., Kerscher, E., Sourmail, T., & Caballero, F.G. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic Steels, Materials Science and Engineering A, 630: 71-77, (2015).
  • 69. Barbacki, A., & Mikołajski, E. Optimization of heat treatment conditions for maximum toughness of high strength silicon steel. Journal of Materials Processing Technology, 78(1): 18-23, (1998).
  • 70. Hasan, H.S., Peet, M.J., Avettand-Fènoël, M. N., & Bhadeshia, H.K.D.H. Effect of tempering upon the tensile properties of a nanostructured bainitic steel. Materials Science and Engineering: A, 615: 340-347, (2014).
APA MURATHAN Ö, KILIÇLI V (2016). Nano Beynitik Çelikler. , 115 - 128. 10.2339/2016.19.2 115-128
Chicago MURATHAN Ömer Faruk,KILIÇLI Volkan Nano Beynitik Çelikler. (2016): 115 - 128. 10.2339/2016.19.2 115-128
MLA MURATHAN Ömer Faruk,KILIÇLI Volkan Nano Beynitik Çelikler. , 2016, ss.115 - 128. 10.2339/2016.19.2 115-128
AMA MURATHAN Ö,KILIÇLI V Nano Beynitik Çelikler. . 2016; 115 - 128. 10.2339/2016.19.2 115-128
Vancouver MURATHAN Ö,KILIÇLI V Nano Beynitik Çelikler. . 2016; 115 - 128. 10.2339/2016.19.2 115-128
IEEE MURATHAN Ö,KILIÇLI V "Nano Beynitik Çelikler." , ss.115 - 128, 2016. 10.2339/2016.19.2 115-128
ISNAD MURATHAN, Ömer Faruk - KILIÇLI, Volkan. "Nano Beynitik Çelikler". (2016), 115-128. https://doi.org/10.2339/2016.19.2 115-128
APA MURATHAN Ö, KILIÇLI V (2016). Nano Beynitik Çelikler. Politeknik Dergisi, 19(2), 115 - 128. 10.2339/2016.19.2 115-128
Chicago MURATHAN Ömer Faruk,KILIÇLI Volkan Nano Beynitik Çelikler. Politeknik Dergisi 19, no.2 (2016): 115 - 128. 10.2339/2016.19.2 115-128
MLA MURATHAN Ömer Faruk,KILIÇLI Volkan Nano Beynitik Çelikler. Politeknik Dergisi, vol.19, no.2, 2016, ss.115 - 128. 10.2339/2016.19.2 115-128
AMA MURATHAN Ö,KILIÇLI V Nano Beynitik Çelikler. Politeknik Dergisi. 2016; 19(2): 115 - 128. 10.2339/2016.19.2 115-128
Vancouver MURATHAN Ö,KILIÇLI V Nano Beynitik Çelikler. Politeknik Dergisi. 2016; 19(2): 115 - 128. 10.2339/2016.19.2 115-128
IEEE MURATHAN Ö,KILIÇLI V "Nano Beynitik Çelikler." Politeknik Dergisi, 19, ss.115 - 128, 2016. 10.2339/2016.19.2 115-128
ISNAD MURATHAN, Ömer Faruk - KILIÇLI, Volkan. "Nano Beynitik Çelikler". Politeknik Dergisi 19/2 (2016), 115-128. https://doi.org/10.2339/2016.19.2 115-128