Yıl: 2020 Cilt: 31 Sayı: 1 Sayfa Aralığı: 3 - 16 Metin Dili: İngilizce DOI: 10.5152/tjg.2019.19367 İndeks Tarihi: 23-06-2021

Inborn errors of metabolism in the differential diagnosis of fatty liver disease

Öz:
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease across all age groups. Obesity, diabetes,and metabolic syndrome, are the primary causes that are closely linked with the development of NAFLD. However, in young children,rare inborn errors of metabolism are predominant secondary causes of NAFLD. Furthermore, inborn errors of metabolism causing hepatosteatosis are often misdiagnosed as NAFLD in adolescents and adults. Many inborn errors of metabolism are treatable disorders andtherefore require special consideration. This review aims to summarize the basic characteristics and diagnostic clues of inborn errors ofmetabolism associated with fatty liver disease. A suggested clinical and laboratory diagnostic approach is also discussed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313: 2263-73.
  • 2. Vajro P, Lenta S, Socha P, et al. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: position paper of the ESPGHAN Hepatology Committee. J Pediatr Gastroenterol Nutr 2012; 54: 700-13.
  • 3. Goh GB, McCullough AJ. Natural History of Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61: 1226-33.
  • 4. Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006; 118: 1388-93.
  • 5. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012; 142: 1592-609.
  • 6. Ferreira CR, van Karnebeek CDM, Vockley J, Blau N. A proposed nosology of inborn errors of metabolism. Genet Med 2019; 21: 102-6.
  • 7. Waters D, Adeloye D, Woolham D, Wastnedge E, Patel S, Rudan I. Global birth prevalence and mortality from inborn errors of metabolism: a systematic analysis of the evidence. J Glob Health 2018; 8:021102.
  • 8. Afzal RM, Lund AM, Skovby F. The impact of consanguinity on the frequency of inborn errors of metabolism. Mol Genet Metab Rep 2018; 15: 6-10.
  • 9. European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-402.
  • 10. Hegarty R, Deheragoda M, Fitzpatrick E, Dhawan A. Paediatric fatty liver disease (PeFLD): All is not NAFLD - Pathophysiological insights and approach to management. J Hepatol 2018; 68: 1286-99.
  • 11. Demirbas D, Brucker WJ, Berry GT. Inborn Errors of Metabolism with Hepatopathy: Metabolism Defects of Galactose, Fructose, and Tyrosine. Pediatr Clin North Am 2018; 65: 337-52.
  • 12. Jumbo-Lucioni PP, Hopson ML, Hang D, Liang Y, Jones DP, Fridovich-Keil JL. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis Model Mech 2013; 6: 84-94.
  • 13. Welling L, Bernstein LE, Berry GT, et al. International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis 2017; 40: 171-6.
  • 14. Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol 2007; 13: 2541-53.
  • 15. Gogus S, Kocak N, Ciliv G, et al. Histologic features of the liver in type Ia glycogen storage disease: comparative study between different age groups and consecutive biopsies. Pediatr Dev Pathol 2002; 5: 299-304.
  • 16. Li XH, Gong QM, Ling Y, et al. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa. Biochem Biophys Res Commun 2014; 455: 90-7.
  • 17. Yoo HW, Shin YL, Seo EJ, Kim GH. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr 2002; 161: 351-3.
  • 18. Shieh JJ, Lu YH, Huang SW, et al. Misdiagnosis as steatohepatitis in a family with mild glycogen storage disease type 1a. Gene 2012; 509: 154-7.
  • 19. Chou JY, Jun HS, Mansfield BC. Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nat Rev Endocrinol 2010; 6: 676-88.
  • 20. Olpin SE. Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability. J Inherit Metab Dis 2013; 36: 645-58.
  • 21. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016; 1863: 2422-35.
  • 22. Tein I. Impact of fatty acid oxidation disorders in child neurology: from Reye syndrome to Pandora’s box. Dev Med Child Neurol 2015; 57: 304-6.
  • 23. Rahman S. Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 2013; 36: 659-73.
  • 24. El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1539-55.
  • 25. Unal O, Hismi B, Kilic M, et al. Deoxyguanosine kinase deficiency: a report of four patients. J Pediatr Endocrinol Metab 2017; 30: 697-702.
  • 26. Fuchs SA, Schene IF, Kok G, et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet Med 2019; 21: 319-30.
  • 27. Brassier A, Ottolenghi C, Boutron A, et al. Dihydrolipoamide dehydrogenase deficiency: a still overlooked cause of recurrent acute liver failure and Reye-like syndrome. Mol Genet Metab 2013; 109: 28-32.
  • 28. Paiva Coelho M, Martins E, Vilarinho L. Diagnosis, management, and follow-up of mitochondrial disorders in childhood: a personalized medicine in the new era of genome sequence. Eur J Pediatr 2019; 178: 21-32.
  • 29. Pericleous M, Kelly C, Wang T, Livingstone C, Ala A. Wolman’s disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol 2017; 2: 670-9.
  • 30. Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol 2013; 58: 1230-43. https://doi.org/10.1016/j.jhep.2013.02.014
  • 31. Burton BK, Deegan PB, Enns GM, et al. Clinical Features of Lysosomal Acid Lipase Deficiency. J Pediatr Gastroenterol Nutr 2015; 61:619-25.
  • 32. Hulkova H, Elleder M. Distinctive histopathological features that support a diagnosis of cholesterol ester storage disease in liver biopsy specimens. Histopathology 2012; 60: 1107-13.
  • 33. Erwin AL. The role of sebelipase alfa in the treatment of lysosomal acid lipase deficiency. Therap Adv Gastroenterol 2017; 10: 553-62.
  • 34. Wilson DP, Friedman M, Marulkar S, Hamby T, Bruckert E. Sebelipase alfa improves atherogenic biomarkers in adults and children with lysosomal acid lipase deficiency. J Clin Lipidol 2018; 12: 604-14.
  • 35. Reynolds TM, Mewies C, Hamilton J, et al. Identification of rare diseases by screening a population selected on the basis of routine pathology results-the PATHFINDER project: lysosomal acid lipase/cholesteryl ester storage disease substudy. J Clin Pathol 2018; 71: 608-13.
  • 36. Ashfield-Watt P, Haralambos K, Edwards R, et al. Estimation of the prevalence of cholesteryl ester storage disorder in a cohort of patients with clinical features of familial hypercholesterolaemia. Ann Clin Biochem 2019; 56: 112-7.
  • 37. Kuloglu Z, Kansu A, Selbuz S, et al. The Frequency of Lysosomal Acid Lipase Deficiency in Children With Unexplained Liver Disease. J Pediatr Gastroenterol Nutr 2019; 68: 371-6.
  • 38. Carter A, Brackley SM, Gao J, Mann JP. The global prevalence and genetic spectrum of lysosomal acid lipase deficiency: A rare condition that mimics NAFLD. J Hepatol 2019; 70: 142-50.
  • 39. Kazemi MH, Taghavi SA, Eshraghian A, Talebzadeh M, Hamidpour L. Education and imaging. Hepatology: Chanarin-Dorfman syndrome, a rare cause of fatty liver and steatohepatitis. J Gastroenterol Hepatol 2015; 30: 803.
  • 40. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis 2010; 5: 16.
  • 41. Gumus E, Haliloglu G, Karhan AN, et al. Niemann-Pick disease type C in the newborn period: a single-center experience. Eur J Pediatr 2017; 176: 1669-76.
  • 42. Deodato F, Boenzi S, Taurisano R, et al. The impact of biomarkers analysis in the diagnosis of Niemann-Pick C disease and acid sphingomyelinase deficiency. Clin Chim Acta 2018; 486: 387-94.
  • 43. Kneeman JM, Misdraji J, Corey KE. Secondary causes of nonalcoholic fatty liver disease. Therap Adv Gastroenterol 2012; 5: 199-207.
  • 44. Bamba V. Update on screening, etiology, and treatment of dyslipidemia in children. J Clin Endocrinol Metab 2014; 99: 3093-102.
  • 45. Kose E, Armagan C, Teke Kisa P, Onay H, Arslan N. Severe hyperchylomicronemia in two infants with novel APOC2 gene mutation. J Pediatr Endocrinol Metab 2018; 31: 1289-93.
  • 46. Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol 2014; 25: 161-8.
  • 47. Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis 2014; 37: 333-9.
  • 48. Chinsky JM, Singh R, Ficicioglu C, et al. Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 2017; 19.
  • 49. Fernandez-Lainez C, Ibarra-Gonzalez I, Belmont-Martinez L, Monroy-Santoyo S, Guillen-Lopez S, Vela-Amieva M. Tyrosinemia type I: clinical and biochemical analysis of patients in Mexico. Ann Hepatol 2014; 13: 265-72.
  • 50. Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis 2017; 40: 757-69.
  • 51. Faghfoury H, Baruteau J, de Baulny HO, Haberle J, Schulze A. Transient fulminant liver failure as an initial presentation in citrullinemia type I. Mol Genet Metab 2011; 102: 413-7.
  • 52. Sinatra F, Yoshida T, Applebaum M, Masion Hoogenraad NJ, Sunshine P. Abnormalities of carbamyl phosphate synthetase and ornithine transcarbamylase in liver of patients with Reye’s syndrome. Pediatr Res 1975; 9: 829-33.
  • 53. Yoshida I, Yoshino M, Watanabe J, Yamashita F. Sudden onset of ornithine carbamoyltransferase deficiency after aspirin ingestion. J Inherit Metab Dis 1993; 16: 917.
  • 54. Komatsu M, Yazaki M, Tanaka N, et al. Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J Hepatol 2008; 49: 810-20.
  • 55. Saheki T, Song YZ. Citrin Deficiency. Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews. Seattle: University of Washington; 2017.
  • 56. Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, et al. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 2017; 40: 195-207.
  • 57. Wong SY, Gadomski T, van Scherpenzeel M, et al. Oral D-Galactose Supplementation in PGM1-CDG. Genet Med 2017; 19: 1226-1235.
  • 58. Jansen JC, Timal S, van Scherpenzeel M, et al. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. Am J Hum Genet 2016; 98: 322-30.
  • 59. Helander A, Jaeken J, Matthijs G, Eggertsen G. Asymptomatic phosphomannose isomerase deficiency (MPI-CDG) initially mistaken for excessive alcohol consumption. Clin Chim Acta 2014; 431: 15-8.
  • 60. Czlonkowska A, Litwin T, Dusek P, et al. Wilson disease. Nat Rev Dis Primers 2018; 4: 21.
  • 61. Roberts EA, Socha P. Wilson disease in children. Handb Clin Neurol 2017; 142: 141-56.
  • 62. Akpinar E, Akhan O. Liver imaging findings of Wilson’s disease. Eur J Radiol 2007; 61: 25-32.
  • 63. Clayton PT. Disorders of bile acid synthesis. J Inherit Metab Dis 2011; 34: 593-604.
  • 64. Heubi JE, Setchell KDR, Bove KE. Inborn Errors of Bile Acid Metabolism. Clin Liver Dis 2018; 22: 671-87.
  • 65. Patel D, Teckman JH. Alpha-1-Antitrypsin Deficiency Liver Disease. Clin Liver Dis 2018; 22: 643-55.
  • 66. Haack TB, Staufner C, Kopke MG, et al. Biallelic Mutations in NBAS Cause Recurrent Acute Liver Failure with Onset in Infancy. Am J Hum Genet 2015; 97: 163-9.
  • 67. Staufner C, Haack TB, Kopke MG, et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. J Inherit Metab Dis 2016; 39: 3-16.
  • 68. Abd El-Kader SM, El-Den Ashmawy EM. Non-alcoholic fatty liver disease: The diagnosis and management. World J Hepatol 2015; 7:846-58.
APA YILMAZ M, Sivri H (2020). Inborn errors of metabolism in the differential diagnosis of fatty liver disease. , 3 - 16. 10.5152/tjg.2019.19367
Chicago YILMAZ Merve YILDIZ,Sivri H. Serap Inborn errors of metabolism in the differential diagnosis of fatty liver disease. (2020): 3 - 16. 10.5152/tjg.2019.19367
MLA YILMAZ Merve YILDIZ,Sivri H. Serap Inborn errors of metabolism in the differential diagnosis of fatty liver disease. , 2020, ss.3 - 16. 10.5152/tjg.2019.19367
AMA YILMAZ M,Sivri H Inborn errors of metabolism in the differential diagnosis of fatty liver disease. . 2020; 3 - 16. 10.5152/tjg.2019.19367
Vancouver YILMAZ M,Sivri H Inborn errors of metabolism in the differential diagnosis of fatty liver disease. . 2020; 3 - 16. 10.5152/tjg.2019.19367
IEEE YILMAZ M,Sivri H "Inborn errors of metabolism in the differential diagnosis of fatty liver disease." , ss.3 - 16, 2020. 10.5152/tjg.2019.19367
ISNAD YILMAZ, Merve YILDIZ - Sivri, H. Serap. "Inborn errors of metabolism in the differential diagnosis of fatty liver disease". (2020), 3-16. https://doi.org/10.5152/tjg.2019.19367
APA YILMAZ M, Sivri H (2020). Inborn errors of metabolism in the differential diagnosis of fatty liver disease. Turkish Journal of Gastroenterology, 31(1), 3 - 16. 10.5152/tjg.2019.19367
Chicago YILMAZ Merve YILDIZ,Sivri H. Serap Inborn errors of metabolism in the differential diagnosis of fatty liver disease. Turkish Journal of Gastroenterology 31, no.1 (2020): 3 - 16. 10.5152/tjg.2019.19367
MLA YILMAZ Merve YILDIZ,Sivri H. Serap Inborn errors of metabolism in the differential diagnosis of fatty liver disease. Turkish Journal of Gastroenterology, vol.31, no.1, 2020, ss.3 - 16. 10.5152/tjg.2019.19367
AMA YILMAZ M,Sivri H Inborn errors of metabolism in the differential diagnosis of fatty liver disease. Turkish Journal of Gastroenterology. 2020; 31(1): 3 - 16. 10.5152/tjg.2019.19367
Vancouver YILMAZ M,Sivri H Inborn errors of metabolism in the differential diagnosis of fatty liver disease. Turkish Journal of Gastroenterology. 2020; 31(1): 3 - 16. 10.5152/tjg.2019.19367
IEEE YILMAZ M,Sivri H "Inborn errors of metabolism in the differential diagnosis of fatty liver disease." Turkish Journal of Gastroenterology, 31, ss.3 - 16, 2020. 10.5152/tjg.2019.19367
ISNAD YILMAZ, Merve YILDIZ - Sivri, H. Serap. "Inborn errors of metabolism in the differential diagnosis of fatty liver disease". Turkish Journal of Gastroenterology 31/1 (2020), 3-16. https://doi.org/10.5152/tjg.2019.19367