Yıl: 2021 Cilt: 25 Sayı: 1 Sayfa Aralığı: 52 - 62 Metin Dili: İngilizce DOI: 10.35333/jrp.2021.288 İndeks Tarihi: 24-06-2021

Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives

Öz:
Antioxidants used in different medical and industrial fields in order to prevent and delay oxidative stress. They play a crucial role in the protecting biological systems against many diseases. 1,4-dihydropyridines are known as calcium channel modulators. Electrochemical techniques are simple, cheap and fast detection techniques and require small amounts of sample, so they offer advantages over commonly used analytical methods. Voltammetric methods have been applied to investigated the antioxidant activity of compounds in different fields. The proposed work is aimed at examining the electrochemical behavior of the 1,4-dihydropyridines by differential pulse voltammetry and hence the assessment of its antioxidant activity from the cathodic reduction peak of oxygen values. The peak current due to oxygen reduction was found to be proportional to the 1,4-dihydropyridines concentration of 0.1 - 0.5 mg/mL. The coefficient of antioxidant activity of 1,4-dihydropyridine derivatives were calculated and compared each other. Nifedipine used as a reference drug that is known as the calcium channel modulator and it is used to compare the antioxidant activities of 1,4-dihydropyridine-derived compounds.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Arulpriya P, Lalitha P, Hemalatha S. Cyclic Voltammetric Assessment of the Antioxidant Activity of Petroleum Ether Extract of Samanea Saman (Jacq.) Merr Pelagia Res Libr.2010; 1(3): 24-35.
  • [2] Li H, Xia N, Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric oxide. 2012; 26(2): 102-110.[CrossRef]
  • [3] Pérez-Tortosa V,López-Orenes A, Martínez-Pérez A, Ferrer MA, Calderón AA. Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem. 2012; 130(2): 362-369.[CrossRef]
  • [4] Lino FMA, De Sá LZ, Torres IMS, Rocha ML, Dinis TCP, Ghedini PC, Somerset VS, Gil ES.Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim Acta. 2014; 128: 25- 31.[CrossRef]
  • [5] Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clın Invest. 2003; 111(6): 785- 793.[CrossRef]
  • [6] Garrido J, Gaspar A, Garrido EM, Miri R, Tavakkoli M, Pourali S,Saso L,BorgesF, Firuzi O. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie. 2012; 94(4):961-967.[CrossRef]
  • [7] Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr. 1996; 16(1): 33-50.[CrossRef] [8] Cocheme HM, MurphyMP. Can antioxidants be effective therapeutics. Curr Opin Investig Drugs. 2010; 11(4): 426- 431.
  • [9] Swarnalatha G. 1, 4-Dihydropyridines: a multifunctional molecule-a review. Int J Chem Tech Res. 2011; 3: 75-89. [10] Triggle DJ. Calcium channel antagonists: clinical uses—past, present and future. Biochem Pharmacol. 2007; 74(1):1- 9.[CrossRef]
  • [11] Boer R, Gekeler V. Chemosensitizers in tumor therapy: new compounds promise better efficacy. Drug Future. 1995; 20(5): 499-510.
  • [12] Briukhanov VM, Zverev IF, Elkin VI. The effect of calcium antagonists on the development of inflammatory edema in rats. Eksp Klin Farmakol. 1994;57(2):47-49.
  • [13] Bahekar S, Shınde D. Synthesis and anti-inflammatory activity of 1, 4-dihydropyridines. Acta Pharmaceutica, 2002. 52(4): 281-287.
  • [14] Gullapalli S, Ramarao P. L-type Ca2+ channel modulation by dihydropyridines potentiates κ-opioid receptor agonist induced acute analgesia and inhibits development of tolerance in rats. Neuropharmacology. 2002; 42(4): 467-475.[CrossRef]
  • [15] Cooper K, Fray MJ, Parry MJ, Richardson K, Steele J. 1, 4-Dihydropyridines as antagonists of platelet activating factor. 1. Synthesis and structure-activity relationships of 2-(4-heterocyclyl) phenyl derivatives. J Med Chem. 1992; 35(17): 3115-3129.
  • [16] Hamann SR, Piascik MT, McAllister Jr RG. Aspects of the clinical pharmacology of nifedipine, a dihydropyridine calcium-entry antagonist. Biopharm Drug Dispos. 1986; 7(1): 1-10.[CrossRef]
  • [17] Sorkin E, Clissold S, BrogdenR. Nifedipine. Drugs. 1985; 30(3): 182-274.
  • [18] Stojek Z. Pulse voltammetry in Electroanalytical methods. Springer,2010, 107-119.
  • [19] Molina A, GonzálezJ. Pulse voltammetry in physical electrochemistry and electroanalysis. Monographs in electrochemistry, 2016.
  • [20] Adam V, Baloun J, Fabrik I, Trnkova L, Kizek R. An electrochemical detection of metallothioneins at the zeptomole level in nanolitre volumes. Sensors. 2008; 8(4):2293-2305.[CrossRef]
  • [21] Scholz F. Voltammetric techniques of analysis: the essentials. ChemTexts. 2015; 1(4): 17.[CrossRef]
  • [22] Dospivova D, Smerkova K, Ryvolova M, Hynek D, Adam V, Kopel P,Stiborova M, Eckschlager T, Hubalek J, Kizek R. Catalytic electrochemical analysis of platinum in Pt-DNA adducts. Int J Electrochem Sci. 2012; 7(4): 3072-3088.
  • [23] Sochor J, Hynek D, Krejcova L, Fabrik I, Krizkova S, Gumulec J, Adam V, Babula P, Trnkova L, Stiborova M, Hubalek J, Masarik M, Binkova H, Eckschlager T, Kizek R. Study of metallothionein role in spinocellular carcinoma tissues of head and neck tumours using Brdicka reaction. Int J Electrochem Sci. 2012; 7(3): 2136-2152.
  • [24] Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs.J Agric Food Chem. 2001; 49(11): 5165-5170.[CrossRef]
  • [25] Liu ZQ. Chemical methods to evaluate antioxidant ability. Chem Rev. 2010; 110(10): 5675-5691.[CrossRef]
  • [26] Šeruga M, Novak I, Jakobek L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011; 124(3): 1208- 1216.[CrossRef]
  • [27] Zielinska D, Szawara-Nowak D,Zielinski H. Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment. J. Agric. Food Chem, 2007; 55(15): 6124-6131.[CrossRef]
  • [28] Fabrik I,Krizkova S, Huska D, Adam V, Hubalek J, Trnkova L, Eckschlager T, Kukacka J, Prusa R, Kizek R. Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanal. 2008; 20(14): 1521-1532. [CrossRef]
  • [29] Dorozhko EV, Korotkova EI.Biologically active substances studied by voltammetric and spectrophotometric techniques. Pharm Chem J. 2011; 44(10): 581-584.
  • [30] Sochor J, Dobes1 J, Krystofova O, Ruttkay-Nedecky B, Babula P, Pohanka M, Jurikova T, Zitka O, Adam V, Klejdus B, Kizek R. Electrochemistry as a tool for studying antioxidant properties. Int J Electrochem Sci. 2013; 8(6): 8464- 8489.
  • [31] Abdel-Hamid R, Newair EF. Electrochemical behavior of antioxidants: I. Mechanistic study on electrochemical oxidation of gallic acid in aqueous solutions at glassy-carbon electrode. J Electroanal Chem. 2011; 657(1-2): 107-112. [CrossRef]
  • [32] Apetrei C,Apetrei IM, Saja JAD,Rodriguez-Mendez ML. Carbon paste electrodes made from different carbonaceous materials: application in the study of antioxidants. Sensors. 2011; 11(2): 1328-1344. [CrossRef]
  • [33] Shapoval G,Babii LV, Kruglyak OS, Vovk AI. Antioxidant activity of thiamine and its structural analogs in reactions with electrochemically generated hydroxyl radicals and hydrogen peroxide. Theor Exp Chem. 2011; 47(1): 55-60.
  • [34] Korotkova EI, Karbainov YA, Shevchuk A. Study of antioxidant properties by voltammetry. J Electroanal Chem. 2002; 518(1): 56-60. [CrossRef]
  • [35] Korotkova EI, Voronova OA, DorozhkoEV. Study of antioxidant properties of flavonoids by voltammetry. J Solid State Electr, 2012; 16(7): 2435-2440. [CrossRef]
  • [36] Qian P, Ai S, Yin H, Li J. Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Microchim Acta. 2010; 168(3-4): 347- 354.[CrossRef]
  • [37] Ziyatdinova G, Labuda J. Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode. Anal Methods. 2011; 3(12): 2777-2782.[CrossRef]
  • [38] Yashin YI, Nemzer BV, Ryzhnev VY, Yashin AY, Chernousova NI, Fedina PA. Creation of a databank for content of antioxidants in food products by an amperometric method. Molecules. 2010; 15(10): 7450-7466.[CrossRef]
  • [39] Brainina KZ, Varzakova D, Gerasimova E. A chronoamperometric method for determining total antioxidant activity. J Anal Chem. 2012; 67(4): 364-369.[CrossRef]
  • [40] Bond AM, Mahon PJ, Schiewe J, Vicente-Beckett V.An inexpensive and renewable pencil electrode for use in fieldbased stripping voltammetry. Anal Chim Acta. 1997; 345(1-3): 67-74.[CrossRef]
  • [41] Wang J, Kawde AN, Sahlin E. Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst. 2000; 125(1): 5-7.[CrossRef]
  • [42] David IG, Bizgan AMC, Popa DE, Buleandra M, Moldovan Z, Badea IA, Tekiner TA, Basaga H, Ciucu AA. Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode. Food Chem. 2015; 173: 1059-1065.[CrossRef]
  • [43] David IG, Popa DE, Calin AA, Buleandra M, Iorgulescu EE. Voltammetric determination of famotidine on a disposable pencil graphite electrode. Turk J Chem. 2016; 40(1): 125-135.
  • [44] Fard GP, Alipour E, Sabzi REA. Modification of a disposable pencil graphite electrode with multiwalled carbon nanotubes: application to electrochemical determination of diclofenac sodium in some pharmaceutical and biological samples. Anal Methods. 2016; 8(19): 3966-3974.[CrossRef]
  • [45] Aziz MA, Kawde AN. Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta. 2013; 115: 214-221.[CrossRef]
  • [46] David IG, BadeaIA, Radu GL. Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turk J Chem. 2013; 37(1): 91-100.[CrossRef]
  • [47] David IG, Popa DE, Buleandra M. Pencil graphite electrodes: a versatile tool in electroanalysis. J Anal Methods Chem. 2017; 2017: 1-22.[CrossRef]
  • [48] Kawde AN, Baig N, Sajid M. Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications. RSC Adv. 2016; 6(94): 91325-91340.[CrossRef]
  • [49] Korotkova EI, Avramchik OA, Angelov TM, Karbainov Y.Investigation of antioxidant activity and lipophilicity parameters of some preservatives. Electrochim Acta. 2005; 51(2): 324-332.[CrossRef]
  • [50] Korotkova EI, Mamaeva EA, Bashkatova NV, Bakibaev AA. Electrochemical determination of the antioxidant activity of 1, 4-benzodiazepine. Pharm Chem J. 2004; 38(3): 170-171.
  • [51] Korotkova EI, Avramchik OA, Kagiya TV, Karbainov YA, Tcherdyntseva NV. Study of antioxidant properties of a water-soluble vitamin E derivative—tocopherol monoglucoside (TMG) by differential pulse voltammetry. Talanta. 2004; 63(3): 729-734.[CrossRef]
  • [52] Beretta G,Granata P, Ferrero M, Orioli M, Facino RM. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal ChimActa. 2005; 533(2): 185- 191.[CrossRef]
  • [53] Stratil P, Klejdus B, Kubáň V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. J Agric Food Chem. 2006; 54(3): 607-616. [CrossRef]
  • [54] Güngör N, Özyürek M, Güçlü K, Çekiç SD, Apak R. Comparative evaluation of antioxidant capacities of thiolbased antioxidants measured by different in vitro methods. Talanta. 2011. 83(5): 1650-1658.[CrossRef]
  • [55] Grippa E, Pavone F, Gatto MT, Petrucci R, Marrosu G, Silvestrini B, Saso L. In vitro evaluation of antioxidant activity by electrophoresis and high performance liquid chromatography. Biochim Biophys Acta. 2000; 1524(2-3): 171-177.[CrossRef]
  • [56] Proestos C, Chorianopoulos N, Nychas GJ, Komaitis M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity.J Agric Food Chem. 2005; 53(4): 1190- 1195.[CrossRef]
  • [57] Brito A, Ramirez JE, Areche C, Sepúlveda B, Simirgiotis MJ. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules. 2014; 19(11): 17400- 17421.[CrossRef]
  • [58] Ehala S, Vaher M, Kaljurand M. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J Agric Food Chem. 2005; 53(16): 6484-6490. [CrossRef]
  • [59] Bektaşoğlu B, Çelik SE, Özyürek M, Güçlü K, Apak R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem Biophys Res Commun. 2006; 345(3): 1194-1200.[CrossRef]
  • [60] Sugihara T, KinoshitaT, Aoyagi S, Tsujino Y, Osakai T. A mechanistic study of the oxidation of natural antioxidants at the oil/water interface using scanning electrochemical microscopy. J Electroanal Chem. 2008; 612(2): 241- 246.[CrossRef]
  • [61] Lu X, Hu L, Wang X. Thin‐Layer Cyclic Voltammetric and Scanning Electrochemical Microscopic Study of Antioxidant Activity of Ascorbic Acid at Liquid/Liquid Interface. Electroanal. 2005; 17(11): 953-958.[CrossRef]
  • [62] Tur'yan YI, Gorenbein P, Kohen R. Theory of the oxygen voltammetric electroreduction process in the presence of an antioxidant for estimation of antioxidant activity. J Electroanal Chem. 2004; 571(2): 183-188. [CrossRef]
  • [63] Sürücü Ö, Bolat G, El-Khouly A, Gündüz MG, Simşek R, Abacı S, Kuralay F, Şafak C.Electrochemical Detection of Antioxidant Activities of 1, 4-Dihydropyridine Derivatives.Hacettepe J Biol Chem. 2016, 44 (4): 535–548.
  • [64] Kadish K, Ding J, Malinski T. Resistance of nonaqueous solvent systems containing tetraalkylammonium salts. Evaluation of heterogeneous electron transfer rate constants for the ferrocene/ferrocenium couple. Analy Chem. 1984; 56(9): 1741-1744.[CrossRef]
  • [65] Kadish KM, Anderson JE. Purification of solvents for electroanalysis: benzonitrile; dichloromethane; 1, 1- dichloroethane and 1, 2-dichloroethane. Pure Appl Chem. 1987; 59(5): 703-714.[CrossRef]
  • [66] Baydar E, Gündüz MG, Krishna VS, Şimşek R, Sriram D, Öztürk Yıldırım S, Butcher RJ, ŞafakC. Synthesis, crystal structure and antimycobacterial activities of 4-indolyl-1, 4-dihydropyridine derivatives possessing various ester groups. Res Chem Intermed. 2017; 43(12): 7471-7489. [CrossRef]
APA Süslü İ, KABLAN S, safak c, Simsek R (2021). Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. , 52 - 62. 10.35333/jrp.2021.288
Chicago Süslü İncilay,KABLAN Sevilay ERDOĞAN,safak cihat,Simsek Rahime Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. (2021): 52 - 62. 10.35333/jrp.2021.288
MLA Süslü İncilay,KABLAN Sevilay ERDOĞAN,safak cihat,Simsek Rahime Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. , 2021, ss.52 - 62. 10.35333/jrp.2021.288
AMA Süslü İ,KABLAN S,safak c,Simsek R Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. . 2021; 52 - 62. 10.35333/jrp.2021.288
Vancouver Süslü İ,KABLAN S,safak c,Simsek R Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. . 2021; 52 - 62. 10.35333/jrp.2021.288
IEEE Süslü İ,KABLAN S,safak c,Simsek R "Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives." , ss.52 - 62, 2021. 10.35333/jrp.2021.288
ISNAD Süslü, İncilay vd. "Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives". (2021), 52-62. https://doi.org/10.35333/jrp.2021.288
APA Süslü İ, KABLAN S, safak c, Simsek R (2021). Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. Journal of research in pharmacy (online), 25(1), 52 - 62. 10.35333/jrp.2021.288
Chicago Süslü İncilay,KABLAN Sevilay ERDOĞAN,safak cihat,Simsek Rahime Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. Journal of research in pharmacy (online) 25, no.1 (2021): 52 - 62. 10.35333/jrp.2021.288
MLA Süslü İncilay,KABLAN Sevilay ERDOĞAN,safak cihat,Simsek Rahime Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. Journal of research in pharmacy (online), vol.25, no.1, 2021, ss.52 - 62. 10.35333/jrp.2021.288
AMA Süslü İ,KABLAN S,safak c,Simsek R Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. Journal of research in pharmacy (online). 2021; 25(1): 52 - 62. 10.35333/jrp.2021.288
Vancouver Süslü İ,KABLAN S,safak c,Simsek R Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives. Journal of research in pharmacy (online). 2021; 25(1): 52 - 62. 10.35333/jrp.2021.288
IEEE Süslü İ,KABLAN S,safak c,Simsek R "Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives." Journal of research in pharmacy (online), 25, ss.52 - 62, 2021. 10.35333/jrp.2021.288
ISNAD Süslü, İncilay vd. "Electrochemical detection of antioxidant activities of 4-indolyl-5-oxo-6,6 (or 7,7) -dimethyl-1,4,5,6,7,8- hexahydroquinoline derivatives". Journal of research in pharmacy (online) 25/1 (2021), 52-62. https://doi.org/10.35333/jrp.2021.288