Yıl: 2021 Cilt: 5 Sayı: 2 Sayfa Aralığı: 51 - 55 Metin Dili: İngilizce DOI: 10.26701/ems.781175 İndeks Tarihi: 29-06-2021

On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis

Öz:
Various numerical parameters such as element size, mesh topology, element formulations effect the predictionaccuracy of sheet metal forming simulations and wrong selection of these parameters can lead to inaccuratepredictions. Therefore, selection of proper numerical parameters is crucial for obtaining of realistic results fromfinite element (FE) analyses. In the present work, influence of the number of through-thickness integrationpoints from the numerical parameters was investigated on the cup drawing simulation. Highly anisotropicAA 2090-T3 aluminum alloy was selected as test material and the anisotropic behavior of the material wasdefined with Barlat 91 yield criterion. Firstly, cup drawing model was created with implicit code Marc and thenFE analyses were performed with five, seven and nine layers to investigate the effect of number of throughthickness integration points. The computed earing profiles and thickness strain distributions were comparedwith measurements. Comparisons showed that the angular locations of maximum cup heights and thicknessstrain distributions along rolling and transverse directions were captured accurately by Yld91 yield criterion andalso it was observed that the layer number effects the maximum cup height and thickness strain distributionalong the rolling direction.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering A, 280(1): 37-49. doi: 10.1016/S0921-5093(99)00653-X.
  • [2] Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 193: 281-297. doi: 10.1098/ rspa.1948.0045.
  • [3] Woodthorpe, J., Pearce, R. (1970). The anomalous behavior of aluminium sheet under balanced biaxial tension. International Journal of Mechanical Sciences, 12(4): 341-347. doi: 10.1016/0020- 7403(70)90087-1.
  • [4] Hill, R. (1979). Theoretical plasticity of textured aggregates. Mathematical Proceedings of the Cambridge Philosophical Society, 85: 179-191. doi: 10.1017/S0305004100055596.
  • [5] Hill, R. (1990). Constitutive modelling of orthotropic plasticity in sheet metals. Journal of the Mechanics and Physics of Solids, 38(3): 405-417. doi: 10.1016/0022-5096(90)90006-P.
  • [6] Barlat, F., Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 5(1): 51-66. doi: 10.1016/0749-6419(89)90019-3.
  • [7] Barlat, F., Lege, D.J., Brem, J.C. (1991). A six-component yield function for anisotropic materials. International Journal of Plasticity, 7(7): 693-712. doi: 10.1016/0749-6419(91)90052-Z.
  • [8] Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J.C., Hayashida, Y., Lege, D.J., Matsui, K., Murtha, S.J., Hattori, S., Becker, R.C., Makosey, S. (1997). Yield fınction development for aluminum alloy sheets. Journal of the Mechanics and Physics of Solids, 45(11-12): 1727- 1763. doi: 10.1016/S0022-5096(97)00034-3
  • [9] Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S-H., Chu, E. (2003). Plane stress yield function for aluminum alloy sheets-part 1: theory. International Journal of Plasticity, 19: 1297-1319. doi: 10.1016/s0749-6419(02)00019-0.
  • [10] Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E. (2005). Linear transformation-based anisotropic yield functions. International Journal of Plasticity, 21: 1009-1039. doi: 10.1016/j.ijplas.2004.06.004.
  • [11] Chung, K., Shah, K. (1992). Finite element simulation of sheet metal forming for planar anisotropic metals. International Journal of Plasticity, 8(4): 453-476. doi: 10.1016/0749-6419(92)90059-L.
  • [12] Yoon, J.W., Song, I.S., Yang, D.Y., Chung, K., Barlat, F. (1995). Finite element method for sheet forming based on an anisotropic strainrate potential and the convected coordinate system. International Journal of Mechanical Sciences, 37(7): 733-752. doi: 10.1016/0020- 7403(95)00003-G.
  • [13] Chung, K., Lee, S.Y., Barlat, F., Keum, Y.T., Park, J.M. (1996). Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential. International Journal of Plasticity, 12(1), 93-115. doi: 10.1016/S0749-6419(95)00046-1.
  • [14] Yoon, J.W., Yang, D.Y., Chung, K. (1999). Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Computer Methods in Applied Mechanics and Engineering, 174(1-2), 23-56. doi: 10.1016/S0045-7825(98)00275-8.
  • [15] Parente, M.P.L., Valente, R.A.F., Jorge, R.M.N., Cardoso, R.P.R., De Sousa, R.J.A. (2006). Sheet metal forming simulation using EAS solid-shell finite elements. Finite Elements in Analysis and Design, 42(13), 1137-1149. doi: 10.1016/j.finel.2006.04.005.
  • [16] Yoon, J.W., Barlat, F., Dick, R.E., Karabin, M.E. (2006). Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. International Journal of Plasticity, 22, 174-193. doi: 10.1016/j. ijplas.2005.03.013.
  • [17] Younas, N., Chalal, H., Abed-Meraim, F. (2020). Finite element simulation of sheet metal forming processes using non-quadratic anisotropic plasticity models and solid-shell finite elements. Procedia Manufacturing, 47, 1416-1423. doi: 10.1016/j.promfg.2020.04.302.
  • [18] Banabic, D. (2010). Sheet Metal Forming Processes Constitutive Modelling and Numerical Simulation. Springer-Verlag, Berlin.
  • [19] Yoon, J.W., Barlat, F., Chung, K., Pourboghrat, F., Yang, D.Y. (2000). Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity, 16(9), 1075-1104. doi: 10.1016/ S0749-6419(99)00086-8.
APA Sener B, AKSEN T, FIRAT M (2021). On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. , 51 - 55. 10.26701/ems.781175
Chicago Sener Bora,AKSEN Toros Arda,FIRAT MEHMET On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. (2021): 51 - 55. 10.26701/ems.781175
MLA Sener Bora,AKSEN Toros Arda,FIRAT MEHMET On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. , 2021, ss.51 - 55. 10.26701/ems.781175
AMA Sener B,AKSEN T,FIRAT M On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. . 2021; 51 - 55. 10.26701/ems.781175
Vancouver Sener B,AKSEN T,FIRAT M On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. . 2021; 51 - 55. 10.26701/ems.781175
IEEE Sener B,AKSEN T,FIRAT M "On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis." , ss.51 - 55, 2021. 10.26701/ems.781175
ISNAD Sener, Bora vd. "On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis". (2021), 51-55. https://doi.org/10.26701/ems.781175
APA Sener B, AKSEN T, FIRAT M (2021). On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. European Mechanical Science, 5(2), 51 - 55. 10.26701/ems.781175
Chicago Sener Bora,AKSEN Toros Arda,FIRAT MEHMET On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. European Mechanical Science 5, no.2 (2021): 51 - 55. 10.26701/ems.781175
MLA Sener Bora,AKSEN Toros Arda,FIRAT MEHMET On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. European Mechanical Science, vol.5, no.2, 2021, ss.51 - 55. 10.26701/ems.781175
AMA Sener B,AKSEN T,FIRAT M On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. European Mechanical Science. 2021; 5(2): 51 - 55. 10.26701/ems.781175
Vancouver Sener B,AKSEN T,FIRAT M On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis. European Mechanical Science. 2021; 5(2): 51 - 55. 10.26701/ems.781175
IEEE Sener B,AKSEN T,FIRAT M "On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis." European Mechanical Science, 5, ss.51 - 55, 2021. 10.26701/ems.781175
ISNAD Sener, Bora vd. "On the Effect of Through-Thickness Integration for the Blank Thickness and Ear Formation in Cup Drawing FE Analysis". European Mechanical Science 5/2 (2021), 51-55. https://doi.org/10.26701/ems.781175