Yıl: 2021 Cilt: 4 Sayı: 1 Sayfa Aralığı: 35 - 41 Metin Dili: İngilizce DOI: 10.35208/ert.810226 İndeks Tarihi: 30-07-2021

Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala

Öz:
In recent years, great focused has been placed on the development of low-cost adsorbents to be used for applicationsregarding treatment of wastewater. In this study, Leucaena leucocephala peel (LLP) was used for adsorption ofmethylene blue from aqueous solutions. The experiments were conducted at seven concentrations (15, 30, 45, 60, 75,90, 105 mg L-1) and three temperatures (298, 308, 318 K). The obtained data were applied to adsorption isotherm,kinetic and thermodynamic calculations. The results showed that Freundlich isotherm was more appropriatecompared to Langmuir and Temkin isotherms. The kinetic results indicated that the process fitted pseudo secondorder model with higher R2 values compared to pseudo first order and intra-particle diffusion models. Gibbs freeenergy, enthalpy and entropy values were calculated for 298 K as 2.776 kJ mol-1, 6.262 kJ mol-1 and 11.699 J mol-1,respectively
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. S. Asad, M. A. Amoozegar, A. A. Pourbabaee, M. N. Sarbolouki and S. M. M. Dastgheib, ‘‘Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria,’’ Bioresource Technology, Vol. 98 (11), pp. 2082–2088, 2007.
  • [2]. R. L. Singh, P. K. Singh and R. P. Singh, ‘‘Enzymatic decolorization and degradation of azo dyes – a review,’’ International Biodeterioration & Biodegradation, Vol. 104, pp. 21–31, 2015.
  • [3]. C. Srikantan, G. K. Suraishkumar and S. Srivastava, ‘‘Effect of light on the kinetics and equilibrium of the textile dye (Reactive red 120) adsorption by helianthus annuus hairy roots,’’ Bioresource Technology, Vol. 257, pp. 84–91, 2018.
  • [4]. Y. Liu, Y. Liu, R. Qu, C. Ji and C. Sun, ‘‘Comparison of adsorption properties for anionic dye by metal organic frameworks with different metal ions,’’ Colloids and Surfaces A:Physicochemical and Engineering Aspects, Vol. 586, pp. 1-7, 2020.
  • [5]. M. A., Ahmad, N., Ahmad, N. and O. S. Bello, ‘‘Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions,’’ Applied Water Science, Vol. 5, pp. 407–423, 2015.
  • [6]. A. A. Spagnoli, D. A. Giannakoudakis and S. Bashkova, ‘‘Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters,’’ Journal of Molecular Liquids, Vol. 229, pp. 465–471, 2017.
  • [7]. R. Subramaniam and S. K. Ponnusamy, ‘‘Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology,’’ Water Resources and Industry, Vol. 11, pp. 64–70, 2015.
  • [8]. M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, ‘‘Dye and its removal from aqueous solution by adsorption: a review,’’ Advances Colloid and Interface Science, Vol. 209, pp. 172–184, 2014.
  • [9]. M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, ‘‘Adsorption of methylene blue on lowcost adsorbents: a review,’’ Journal of Hazardous Materials, Vol. 177(1–3), pp. 70–80, 2010.
  • [10]. M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim and A. Idris, ‘‘Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review,’’ Desalination, Vol. 280(1-3), pp.1–13, 2011.
  • [11]. Y.-G. Kang, H. Yoon, C.-S. Lee, E.-J. Kim and Y.-S. Chang, ‘‘Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite,’’ Water Research, Vol. 151, pp. 413-422, 2019.
  • [12]. A. Muniyasamy, G. Sivaporul, A. Gopinath, R. Lakshmanan, A. Altaee, A. Achary and P. V. Chellam, ‘‘Process development for the degradation of textile azo dyes (mono-, di-, poly- ) by advanced oxidation process - ozonation: experimental & partial derivative modelling approach,’’ Journal of Environmental Management, Vol. 265, pp. 1-10, 2020.
  • [13]. Y. Lu, Y. Fang, X. Xiao, S. Qi, C. Huan, Y. Zhan, H. Cheng and G. Xu, ‘‘Petal-like molybdenum disulfide loaded nanofibers membrane with super hydrophilic property for dye adsorption,’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 553, pp. 210-217, 2018.
  • [14]. Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao, R. Wang and K. Sui, Y. Tan, ‘‘Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes,’’ Composites Part B: Engineering, Vol. 162, pp. 671-677, 2019.
  • [15]. L. A. Pereira, A. B. Couto, D. A. L. Almeida and N. G. Ferreira, ‘‘Singular properties of boron-doped diamond/carbon fiber composite as anode in Brilliant Green dye electrochemical degradation,’’ Diamond and Related Materials, Vol. 103, pp. 1-7, 2020.
  • [16]. N. P. Shetti, S. J. Malode, R. S. Malladi, S. L. Nargund, S. S. Shukla and T. M. Aminabhavi, ‘‘Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode,’’ Microchemical Journal, Vol. 146, pp. 387-392, 2019.
  • [17]. J. Joseph, R. C. Radhakrishnan, J. K. Johnson, S. P. Joy and J. Thomas, ‘‘Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate,’’ Materials Chemistry and Physics, Vol. 242, pp. 1-8, 2020.
  • [18]. H. N. Bhatti, Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal and A. Nazir, ‘‘Efficient removal of dyes using carboxymethyl cellulose/ alginate/ polyvinyl alcohol/ rice husk composite: Adsorption/desorption, kinetics and recycling studies,’’ International Journal of Biological Macromolecules, Vol. 150, pp. 861-870, 2020.
  • [19]. C. Puri and G. Sumana, ‘‘Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite,’’ Applied Clay Science, Vol. 166, pp. 102-112, 2018.
  • [20]. E. Alver, A. Ü. Metin and F. Brouers, ‘‘Methylene blue adsorption on magnetic alginate/rice husk bio-composite,’’ International Journal of Biological Macromolecules, Vol. 154, pp. 104-113, 2020.
  • [21]. F. Dhaouadi, L. Sellaoui, G. L. Dotto, A. BonillaPetriciolet, A. Erto and A. B. Lamine, ‘‘Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model,’’ Journal of Molecular Liquids, Vol. 305, pp. 1-8, 2020.
  • [22]. A. H. Jawad, R. Razuan, J. N. Appaturi and L. D. Wilson, ‘‘Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation,’’ Surfaces and Interfaces, Vol. 16, pp. 76-84, 2019.
  • [23]. D. S. Tong, C. W. Wu, M. O. Adebajo, G. C. Jin, W. H. Yu, S. F. Ji and C. H. Zhou, ‘‘Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/ montmorillonite nanocomposites,’’ Applied Clay Science, Vol. 161, pp. 256-264, 2018.
  • [24]. S. Idris, Y. A. Iyaka, M. M. Ndamitso, E. B. Mohammed and M. T. Umar, ‘‘Evaluation of kinetic models of copper and lead uptake from dye wastewater by activated pride of barbados shell,’’ American Journal of Chemistry, Vol. 1, pp. 47–51, 2012.
  • [25]. Y. Ho and A. Ofomaja, ‘‘Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber,’’ Journal of Hazardous Materials, Vol. 129, pp. 137–142, 2006.
  • [26]. F. B. Rebah and S. M. Siddeeg, ‘‘Cactus an ecofriendly material for wastewater treatment: a review,’’ Journal of Materials and Environmental Science, Vol. 8, pp. 1770–1782, 2017.
  • [27]. H. A. Al-Husseiny, ‘‘Adsorption of methylene blue dye using low cost adsorbent of sawdust: batch and continues studies,’’ Journal of University of Babylon, Vol. 22(2), pp. 296-310, 2014.
  • [28]. W. C. Wanyonyi, J. M. Onyari and P. M. Shiundu, ‘‘Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: kinetic and equilibrium studies,’’ Energy Procedia, Vol. 50, pp. 862–869, 2014.
  • [29]. M. J. Ahmed, P. U. Okoye, E. H. Hummadi and B. H. Hameed, ‘‘High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue,’’ Bioresource Technology, Vol. 278, pp. 159-164, 2019.
  • [30]. L. M. Pandey, ‘‘Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue,’’ Applied Clay Science, Vol. 169, pp. 102-111, 2019.
  • [31]. I. Ghosh, S. Kar, T. Chatterjee, N. Bar andS. K. Das, ‘‘Removal of methylene blue from aqueous solution using Lathyrus sativus husk: Adsorption study, MPR and ANN modeling,’’ Process Safety and Environmental Protection, Vol. 149, pp. 345-361, 2021.
  • [32]. S. Langergren and B. K. Svenska, “Zur theorie der sogenannten adsorption geloester stoffe,” Veternskapsakad Handlingar, Vol. 24, pp. 1-39, 1898.
  • [33]. Y. S. Ho and G. Mckay, ‘‘Kinetic models for the sorption of dye from aqueous solution by wood,’’ Process Safety and Environmental Protection, Vol. 76, pp. 183-191, 1998.
  • [34]. W. J. Weber and J. C. Morris, ‘‘Kinetics of adsorption on carbon from solution,’’ Journal of the Sanitary Engineering Division, Vol. 89, pp. 31-60, 1963.
APA KUL A, Aldemir A (2021). Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. , 35 - 41. 10.35208/ert.810226
Chicago KUL Ali Rıza,Aldemir Adnan Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. (2021): 35 - 41. 10.35208/ert.810226
MLA KUL Ali Rıza,Aldemir Adnan Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. , 2021, ss.35 - 41. 10.35208/ert.810226
AMA KUL A,Aldemir A Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. . 2021; 35 - 41. 10.35208/ert.810226
Vancouver KUL A,Aldemir A Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. . 2021; 35 - 41. 10.35208/ert.810226
IEEE KUL A,Aldemir A "Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala." , ss.35 - 41, 2021. 10.35208/ert.810226
ISNAD KUL, Ali Rıza - Aldemir, Adnan. "Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala". (2021), 35-41. https://doi.org/10.35208/ert.810226
APA KUL A, Aldemir A (2021). Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research & Technology, 4(1), 35 - 41. 10.35208/ert.810226
Chicago KUL Ali Rıza,Aldemir Adnan Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research & Technology 4, no.1 (2021): 35 - 41. 10.35208/ert.810226
MLA KUL Ali Rıza,Aldemir Adnan Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research & Technology, vol.4, no.1, 2021, ss.35 - 41. 10.35208/ert.810226
AMA KUL A,Aldemir A Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research & Technology. 2021; 4(1): 35 - 41. 10.35208/ert.810226
Vancouver KUL A,Aldemir A Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala. Environmental Research & Technology. 2021; 4(1): 35 - 41. 10.35208/ert.810226
IEEE KUL A,Aldemir A "Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala." Environmental Research & Technology, 4, ss.35 - 41, 2021. 10.35208/ert.810226
ISNAD KUL, Ali Rıza - Aldemir, Adnan. "Isotherm, kinetic and thermodynamic studies of methylene blue adsorption using Leucaena leucocephala". Environmental Research & Technology 4/1 (2021), 35-41. https://doi.org/10.35208/ert.810226