Yıl: 2020 Cilt: 44 Sayı: 4 Sayfa Aralığı: 302 - 347 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts

Öz:
It is expected the fact that the current following across metal-semiconductor (MS) rectifying contact named as Schottky barrier diode (SBDs) and effect of sample temperature on their electrical properties obey thermionic emission (TE) current model. But, it has been seen that the abnormal behaviors in the measured electrical characteristics cannot be exactly understood by the classical TE transport theory. In the literature, the observed abnormal behaviors have been successfully explained by a Gaussian distribution function and by the pinch-off model being interaction of the neighbor patches suggested by Tung and coworkers, the named discrete regions model as “patches” with low barrier placed in a higher uniform barrier area.
Anahtar Kelime: Schottky barrier height Metal-semiconductor contact Schottky barrier diodes barrier inhomogeneity rectifying contact Schottky contacts characteristics diode parameters

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1]Sze SM. Physics of Semiconductor Devices. 2nd ed. New York, NY, USA: John Wiley & Sons, Inc., 1981, p. 249,256, 402.
  • [2]Card HC, Rhoderick EH. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal ofPhysics D: Applied Physics 1971; 4: 1589-601. doi: 10.1088/0022-3727/4/10/319
  • [3]Türüt A, Yalçin N, Saglam M. Parameter extraction from non-ideal C-V characteristics of a Schottky diode withand without interfacial layer. Solid-State Electronics 1992; 35. doi: 10.1016/0038-1101(92)90286-L
  • [4]Horváth ZJ. Evaluation of the interface state energy distribution from Schottky I-V characteristics. Journal ofApplied Physics 1988; 63: 976-978. doi: 10.1063/1.340048
  • [5]Borrego JM, Gutmann RJ, Ashok S. Interface state density in Au-nGaAs Schottky diodes. Solid-State Electronics1977; 20: 125-132. doi: 10.1016/0038-1101(77)90061-2.
  • [6]Mönch W. On the band-structure lineup at Schottky contacts. Material Science in Semiconductor Processing 2014;28: 2-12. doi: 10.1016/j.mssp.2014.03.024
  • [7]Zhang P, Valfells Á, Ang LK, Luginsland JW, Lau YY. 100 years of the physics of diodes. Applied Physics Reviews2017; 4. doi: 10.1063/1.4978231
  • [8]Cowley AM, Sze SM. Surface states and barrier height of metal-semiconductor systems. Journal of Applied Physics1965; 36: 3212-3220. doi: 10.1063/1.1702952.
  • [9]Crowell CR, Roberts GI. Surface state and interface effects on the capacitance-voltage relationship in Schottkybarriers. Journal of Applied Physics 1969; 40: 3726-3730. doi: 10.1063/1.1658262
  • [10]Bala S. The role of interface state density in I-V characteristics of metal-semiconductor contact with interfaciallayer. International Journal of Emerging Technology and Advanced Engineering 2012; 2 (12): 364-368.
  • [11]Chattopadhyay P, Daw AN. On the current transport mechanism in a metal-insulator-semiconductor (MIS) diode.Solid-State Electronics 1986; 29: 555560. doi: 10.1016/0038-1101(86)90078-X
  • [12]Dimitrijev S. Principles of Semiconductor Devices. The Oxford Series Electrical and Computer Engineering, Vol.22. Oxford, UK: Oxford University Press, 2008.
  • [13]Tung RT. Formation of an electric dipole at metal-semiconductor interfaces. Physical Review B - Condensed Matterand Materials Physics 2001; 64: 1-15. doi: 10.1103/PhysRevB.64.205310
  • [14]Aboelfotoh MO. Temperature dependence of the Schottky-barrier height of tungsten on n-type and p-type silicon.Solid-State Electronics 1991; 34: 51-55. doi: 10.1016/0038-1101(91)90200-I.
  • [15]Turut A, Karabulut A, Efeoglu H. Electrical characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MISstructures over a wide measurement temperature. Journal of Optoelectronics and Advanced Materials 2017; 19:424-433.
  • [16]Duman S, Gürbulak B, Dogan S, Türüt A. Electrical characteristics and inhomogeneous barrier analysis of Au-Be/p-InSe:Cd Schottky barrier diodes. Microelectronic Engineering 2009; 86. doi: 10.1016/j.mee.2008.10.004
  • [17]Vural O, Şafak Y, Türüt A, Altındal S. Temperature dependent negative capacitance behavior of Al/rhodamine-101/n- GaAs Schottky barrier diodes and R seffects on the C-V and G/ω-V characteristics. Journalof Alloys and Compounds 2012; 513: 107-111. doi: 10.1016/j.jallcom.2011.09.101
  • [18]Gupta RK, Yakuphanoglu F. Analysis of device parameters of Al/In2O3/p-Si Schottky diode. MicroelectronicEngineering 2013; 105: 13-17. doi: 10.1016/j.mee.2012.12.026
  • [19]Marnadu R, Chandrasekaran J, Vivek P, Balasubramani V, Maruthamuthu S. Impact of phase transformation inWO3 thin films at higher temperature and its compelling interfacial role in Cu/WO3/p-Si structured Schottkybarrier diodes. Zeitschrift für Physicalische Chemie 2020; 234: 355-379. doi: 10.1515/zpch-2018-1289
  • [20]Tung RT. The physics and chemistry of the Schottky barrier height. Applied Physics Review 2014; 1: 1-54. doi:10.1063/1.4858400
  • [21]Marnadu R, Chandrasekaran J, Raja M, Balaji M, Maruthamuthu S et al. Influence of metal work function andincorporation of Sr atom on WO3 thin films for MIS and MIM structured SBDs. Superlattices and Microstructures2018; 119: 134-149. doi: 10.1016/j.spmi.2018.04.049
  • [22]Maeda K, Umezu I, Ikoma H, Yoshimura T. Nonideal J-V characteristics and interface states of an a-Si:H Schottkybarrier. Journal of Applied Physics 1990; 68: 28582867. doi: 10.1063/1.346418
  • [23]Karataş Ş, Temirci C, Çakar M, Türüt A. Temperature dependence of the current-voltage characteristicsof the Al/Rhodamine-101/p-Si(1 0 0) contacts. Applied Surface Science 2006; 252 (3): 2209-2216. doi:10.1016/j.apsusc.2005.03.222
  • [24]Goodman AM. Metal–semiconductor barrier height measurement by the differential capacitance method – onecarrier system. Journal of Applied Physics 1963; 34: 329338. doi: 10.1063/1.1702608
  • [25]Cowley AM, Sze SM. Surface states and barrier height of metal-semiconductor systems. Journal of Applied Physics1965; 36 (7): 3212-3220. doi: 10.1063/1.1702952
  • [26]Levine JD. Schottky-barrier anomalies and interface states. Journal of Applied Physics 1971; 42: 3991-3999. doi:10.1063/1.1659716
  • [27]Padovani FA. Thermionic emission in AuGaAs Schottky barriers. Solid-State Electronics 1968; 11: 193-200. doi:10.1016/0038-1101(68)90078-6
  • [28]Ashok S, Borrego JM, Gutmann RJ. Electrical characteristics of GaAs MIS Schottky diodes. Solid-State Electronics1979; 22: 621-631. doi: 10.1016/0038-1101(79)90135-7
  • [29]Tseng HH, Wu CY. The effects of thermal silicidation of the current transport characteristics of Ti/￿r111￿qSiSchottky-barrier contacts. Solid-State Electronics 1988; 31: 35-44. doi: 10.1016/0038-1101(88)90083-4
  • [30]Szatkowski J. Simple interface-layer model for the nonideal characteristics of the Schottky-barrier diode. Solid-StateElectronics 1992; 35: 1013-1015.
  • [31]Eglash SJ, Newman N, Pan S, Mo D, Shenai K et al. Engineered Schottky barrier diodes for the modification andcontrol of Schottky barrier heights. Journal of Applied Physics 1987; 61: 5159-5169. doi: 10.1063/1.338290
  • [32]Turut A, Karabulut A, Ejderha K, BıyıklıN. Capacitance-conductance-current-voltage characteristics of atomic layerdeposited Au/Ti/Al<inf>2</inf>O<inf>3</inf>/n-GaAs MIS structures. Materials Sciencein Semiconductor Processing 2015; 39: 400-407. doi: 10.1016/j.mssp.2015.05.025
  • [33]Karabulut A, Orak I, Caglar M, Turut A. The current-voltage characteristics over the measurement temperature of60-400 K in the Au/Ti/ N -GaAs contacts with high dielectric HfO2 interfacial layer. Surface Review and Letters2019; 26: 1-11. doi: 10.1142/S0218625X19500458
  • [34]Karabulut A, Efeoglu H, Turut A. Influence of Al2O3 barrier on the interfacial electronic structure of Au/Ti/n-GaAsstructures. Journal of Semiconductors 2017; 38: 1-10. doi: 10.1088/1674-4926/38/5/054003
  • [35]Karabulut A, Orak İ, Turut A. Electrical characteristics of Au/Ti/HfO2/n-GaAs metal-insulator-semiconductorstructures with high-k interfacial layer. International Journal of Chemical Technology 2018; 2: 116-122. doi:10.32571/ijct.456902
  • [36]Morita M, Ohmi T, Hasegawa E, Kawakami M, Ohwada M. Growth of native oxide on a silicon surface. Journal ofApplied Physics 1990; 68: 1272-1281. doi: 10.1063/1.347181
  • [37]Chattopadhyay P. A new technique for the determination of barrier height of Schottky barrier diodes. Solid-StateElectronics 1995; 38: 739741. doi: 10.1016/0038-1101(94)00167-E
  • [38]Ho PS, Yang ES, Evans HL, Wu X. Electronic states at silicide-silicon interfaces. Physics Review Letters 1986; 56:177-180. doi: 10.1103/PhysRevLett.56.177
  • [39]Paoli TL, Barnes PA et al. Saturation of the junction voltage in stripe-geometry (AIGa)As double-heterostructurejunction lasers. Applied Physics Letters 2013; 28 (12): 714. doi: 10.1063/1.88625
  • [40]Cheung SK, Cheung NW. Extraction of Schottky diode parameters from forward current-voltage characteristics.Applied Physics Letters 1986; 49: 85-87. doi: 10.1063/1.97359
  • [41]Werner JH. Schottky barrier and pn-junctionI/Vplots – small signal evaluation. Applied Physics A 1988; 300:291-300. doi: 10.1007/BF00615935.
  • [42]Chattopadhyay P, RayChaudhuri B. Frequency dependence of forward capacitance-voltage characteristics of Schot-tky barrier diodes. Solid-State Electronics 1993; 36: 605-610. doi: 10.1016/0038-1101(93)90272-R
  • [43]Norde H. A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics1979; 50: 5052-5053. doi: 10.1063/1.325607
  • [44]Sato K, Yasumura Y. Study of forward I-V plot for Schottky diodes with high series resistance. Journal of AppliedPhysics 1985; 58: 3655-3657. doi: 10.1063/1.335750
  • [45]Bohlin KE. Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics 1986;60 (3): 1223-1224. doi: 10.1063/1.337372
  • [46]Manifacier JC, Brortryb N, Ardebili R, Charles JP. Schottky diode: comments concerning the diode parametersdetermination from the forward IV plot. Journal of Applied Physics 1988; 64 (2): 2502-2504. doi: 10.1063/1.341632
  • [47]Ayyildiz E, Türüt A, Efeoglu H, Tüzemen S, Saglam M et al. Effect of series resistance on the forward current-voltage characteristics of Schottky diodes in the presence of interfacial layer. Solid-State Electronics 1996; 39 (1):83-87.
  • [48]Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E et al. Influence of surface cleaning ef-fects on properties of Schottky diodes on 4H–SiC. Applied Surface Science 2008; 254 (18): 8106-8110. doi:10.1016/j.apsusc.2008.03.018
  • [49]Aubry V, Meyer F. Schottky diodes with high series resistance: limitations of forward I-V methods. Journal ofApplied Physics 1994; 76: 7973-7984. doi: 10.1063/1.357909
  • [50]Oruç Ç, Altındal A. Comparative study of I–V methods to extract Au/FePc/p-Si Schottky barrier diode parameters.Applied Physics A 2018; 124: 1-8. doi: 10.1007/s00339-017-1461-9
  • [51]Cibils RM, Buitrago RH. Forward I-V plot for nonideal Schottky diodes with high series resistance. Journal ofApplied Physics 1985; 58: 1075-1077. doi: 10.1063/1.336222
  • [52]Lee TC, Fung S, Beling CD, Au HL. A systematic approach to the measurement of ideality factor, series resistance,and barrier height for Schottky diodes. Journal of Applied Physics 1992; 72: 4739-4742. doi: 10.1063/1.352082
  • [53]Kiuru T, Member S, Mallat J. Schottky diode series resistance and thermal resistance extraction from S -parameterand temperature controlled I–V measurements. IEEE Transactions on Microwave Theory and Techniques 2011; 59(5): 2108-2116.
  • [54]Durmuş H, Atav Ü. Extraction of voltage-dependent series resistance from I-V characteristics of Schottky diodes.Applied Physics Letter 2011; 99: 2011-2014. doi: 10.1063/1.3633116
  • [55]Mikhelashvili V, Eisenstein G, Garber V, Fainleib S, Bahir G et al. On the extraction of linear and nonlinearphysical parameters in nonideal diodes. Journal of Applied Physics 2012; 85 (6): 6873-6883. doi: 10.1063/1.370206
  • [56]Gammon PM, Pérez-Tomás A, Shah VA, Vavasour O, Donchev E et al. Modelling the inhomogeneous SiC Schottkyinterface. Journal of Applied Physics 2013; 114. doi: 10.1063/1.4842096
  • [57]Werner JH, Güttler HH. Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics 1991; 69: 1522-1533. doi: 10.1063/1.347243
  • [58]Schmitsdorf RF, Kampen TU, Mönch W. Explanation of the linear correlation between barrier heights and idealityfactors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. Journal of Vacuum Scienceand Technology B: Microelectronics and Nanometer Structures Processing, Measurement and Phenomena 1997; 15(1):1221-1226. doi: 10.1116/1.589442
  • [59]Gülnahar M. Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current–Voltage and Capacitance–Voltage Measurements. Metallurgical and Materials Transactions A 2015; 46: 3960-3971.doi: 10.1007/s11661-015-3044-8
  • [60]Tung RT. Recent advances in Schottky barrier concepts. Materials Science and Engineering Reports 2001; 35: 1-138.doi: 10.1016/S0927-796X(01)00037-7
  • [61]Güçlü Ç, Özdemir AF, Altindal Ş. Double exponential I–V characteristics and double Gaussian distribution ofbarrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. AppliedPhysics A 2016; 122. doi: 10.1007/s00339-016-0558-x
  • [62]Reddy VR, Choi CJ. Microstructural and interface properties of Au/SrTiO3 (STO)/n-GaN heterojunctionwith an e-beam evaporated high-k STO interlayer. Journal of Alloys and Compounds 2020; 823. doi:10.1016/j.jallcom.2020.153775
  • [63]Calcagno L, Ruggiero A, Roccaforte F, La Via F. Effects of annealing temperature on the degree of inhomogeneityof nickel-silicide/SiC Schottky barrier. Journal of Applied Physics 2005; 98: 1-6. doi: 10.1063/1.1978969
  • [64]Tung RT. Electron transport of inhomogeneous Schottky barriers. Applied Physics Letters 1991; 58: 2821-2823.doi: 0.1063/1.104747
  • [65]Tung RT. Electron transport at metal-semiconductor interfaces: general theory. Physical Review B 1992; 45: 13509-13523. doi: 10.1103/PhysRevB.45.13509
  • [66]McCafferty PG, Sellai A, Dawson P, Elabd H. Barrier characteristics of PtSi/p-Si Schottky diodes as determinedfrom I-V-T measurements. Solid-State Electronics 1996; 39: 583-592. doi: 10.1016/0038-1101(95)00162-X
  • [67]Horváth ZJ. Semiconductor nanocrystals in dielectrics: optoelectronic and memory applications of related silicon-based MIS devices. Current Applied Physics 2006; 6: 145-148. doi: 10.1016/j.cap.2005.07.028
  • [68]Osvald J, LalinskıT, Vanko G. High temperature current transport in gate oxides based (GaN)/AlGaN/GaNSchottky diodes. Applied Surface Science 2018; 461: 206-211. doi: 10.1016/j.apsusc.2018.06.113
  • [69]Dobročka E, Osvald J. Influence of barrier height distribution on the parameters of Schottky diodes. Applied PhysicsLetter 1994; 65: 575-577. doi: 10.1063/1.112300
  • [70]Chand S, Kumar J. On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodes. Journal ofApplied Physics 1996; 80: 288-294. doi: 10.1063/1.362818
  • [71]Kumar A, Sharma KK, Chand S, Kumar A. Investigation of barrier inhomogeneities in I-V and C-V characteristicsof Ni/n-TiO2/p-Si/Al heterostructure in wide temperature range. Superlattices and Microstructures 2018; 122:304-315. doi: 10.1016/j.spmi.2018.07.034
  • [72]Baltakesmez A, Tekmen S, Güzeldir B. Temperature dependent current- and capacitance-voltage characteristics ofW/n-Si structures with two-dimensional WS 2 and three-dimensional WO 3 interfaces deposited by RF sputteringtechnique. Materials Science in Semiconductor Processing 2020; 118: 105204.
  • [73]Keskin M, Akkaya A, Ayyıldız E, Uygun Öksüz A, Özbay Karakuş M. Investigation of the temperature-dependentelectrical properties of Au/PEDOT:WO3/p-Si hybrid device. Journal of Materials Science Electron 2019; 30: 16676-16686. doi: 10.1007/s10854-019-02048-8
  • [74]Çetinkara HA, Türüt A, Zengın DM, Erel Ş. The energy distribution of the interface state density of Pb/p-SiSchottky contacts exposed to clean room air. Applied Surface Science 2003; 207: 190-199. doi: 10.1016/S0169-4332(02)01323-5
  • [75]Biber M, Güllü Ö, Forment S, Van Meirhaeghe RL, Türüt A. The effect of Schottky metal thickness on barrierheight inhomogeneity in identically prepared Au/n-GaAs Schottky diodes. Semiconductor Science and Technology2006; 21: 1-5. doi: 10.1088/0268-1242/21/1/001
  • [76]Sürücü B, Güllü HH, Terlemezoglu M, Yildiz DE, Parlak M. Determination of current transport char-acteristics in Au-Cu/CuO/n-Si Schottky diodes. Physica B: Condensed Matter 2019; 570: 246-253. doi:10.1016/j.physb.2019.06.024
  • [77]Ejderha K, Asubay S, Yildirim N, Güllü Ö, Turut A et al. The characteristic diode parameters in Ti/P-InP contactsprepared by Dc sputtering and evaporation processes over a wide measurement temperature. Surface Review andLetters 2017; 24: 1-9. doi: 10.1142/S0218625X17500524.
  • [78]Güllü Ö, Biber M, Duman S, Türüt A. Electrical characteristics of the hydrogen pre-annealed Au/n-GaAsSchottky barrier diodes as a function of temperature. Applied Surface Science 2007; 253: 7246-7253. doi:10.1016/j.apsusc.2007.03.002
  • [79]Özer M, Güzel T, Asimov A, Ahmetoglu M. Gaussian distribution of inhomogeneous barrier height in Au/n-GaP(100) Schottky barrier diodes. Journal of Optoelectronics and Advanced Materials 2014; 16: 606-611.
  • [80]Al-dharob MH, Lapa HE, Kökce A, Özdemir AF, Aldemir DA et al. The investigation of current-conductionmechanisms ( CCMs ) in Au / measurements. Materials Science in Semiconductor Processing 2018; 85: 98-105.
  • [81]Ozkartal A. Characterization of the ITO/p-Si/Al contacts produced by thermal evaporation. Vacuum 2019; 168:108799. doi: 10.1016/j.vacuum.2019.108799
  • [82]Özmenteş R, Temirci C, Özkartal A, Ejderha K, Yildirim N. Characterization of CuO/n-Si heterojunction solar cellsproduced by thermal evaporation. Materials Science - Poland 2018; 36 (1): 668-674. doi: 10.2478/msp-2018-0092
  • [83]Leroy WP, Opsomer K, Forment S, Van Meirhaeghe RL. The barrier height inhomogeneity in identically preparedAu/n-GaAs Schottky barrier diodes. Solid-State Electron 2005; 49: 878-883. doi: 10.1016/j.sse.2005.03.005
  • [84]Winfried M. GmbH Physics and Astronomy. Berlin, Germany: Springer-Verlag, 1993.
  • [85]Tunhuma SM, Auret FD, Legodi MJ, Diale M. The effect of high temperatures on the electrical characteristics ofAu/n-GaAs Schottky diodes. Physica B: Condensed Matter 2016; 480: 201-205. doi: 10.1016/j.physb.2015.08.016
  • [86]Jones FE, Daniels-Hafer C, Wood BP, Danner RG, Lonergan MC. Current transport at the p-InP|poly(pyrrole)interface. Journal of Applied Physics 2001; 90: 1001-1010. doi: 10.1063/1.1380220
  • [87]Bandyopadhyay S, Bhattacharyya A, Sen SK. Measurements and modelling of the barrier heights and ideality factorsin the metal/conducting polymer composite Schottky device. Journal of Applied Physics 1999; 85: 3671-3676. doi:10.1063/1.369732
  • [88]Aniltürk ÖS, Turan R. Electrical transport at a non-ideal CrSi2-Si junction. Solid-State Electron 2000; 44: 41-48.doi: 10.1016/S0038-1101(99)00204-X
  • [89]Aniltürk ÖS, Turan R. Temperature dependence of a CrSi2 Schottky barrier on n-type and p-type Si. SemiconductorScience and Technology 1999; 14: 1060-1064. doi: 10.1088/0268-1242/14/12/308
  • [90]Korucu D, Turut A, Efeoglu H. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diodeanalyzed using Tung’s model. Physica B: Condensed Matter 2013; 414: 35-41. doi: 10.1016/j.physb.2013.01.010
  • [91]Aydın ME, Yıldırım N, Türüt A. Temperature-dependent behavior of Ni/4H-nSiC Schottky contacts. Journal ofApplied Physics 2007; 102 (1): 043701. doi: 10.1063/1.2769284
  • [92]Im HJ, Ding Y, Pelz JP, Choyke WJ. Nanometer-scale test of the Tung model of Schottky-barrier height inhomo-geneity. Physical Review B 2001; 64: 075310. doi: 10.1103/physrevb.64.075310
  • [93]Rossi RC, Lewis NS. Investigation of the size-scaling behavior of spatially nonuniform barrier height contacts tosemiconductor surfaces using ordered nanometer-scale nickel arrays on silicon electrodes. The Journal of PhysicalChemistry B 2001; 105 (43): 12303-12318. doi: 10.1021/jp011861c
  • [94]Sellai A, Mamor M. Potential barrier inhomogeneities in irradiated Pd/n-SiGe Schottky diodes. Applied Physics A2007; 89: 503-508. doi: 10.1007/s00339-007-4095-5
  • [95]Cetin H, Şahin B, Ayyildiz E, Türüt A. The barrier-height inhomogeneity in identically prepared H-terminatedTi/p-Si Schottky barrier diodes. Semiconductor Science and Technology 2004; 19 (6): 1113-1116. doi: 10.1088/0268-1242/19/9/007
  • [96]Durmuş H, Yıldırım M, Altındal Ş. On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrierdiodes fabricated by pulsed laser deposition in temperature range of 60–400 K. Journal of Materials Science:Materials in Electronics 2019; 30: 9029-9037. doi: 10.1007/s10854-019-01233-z
  • [97]Carlsson SB, Deppert K, Montelius L, Samuelson L. Electron transport at Au/InP interface with nanoscopicexclusions. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Processing,Measurement, and Phenomena 1996; 14 (1): 2794-2798. doi: 10.1116/1.588835
  • [98]Zhu S, Van Meirhaeghe RL, Forment S, Ru GP, Qu XP et al. Schottky barrier characteristics of ternary silicideCo 1-xNixSi2 on n-Si(1 0 0) contacts formed by solid phase reaction of multilayer. Solid-State Electron 2004; 48:1205-1209. doi: 10.1016/j.sse.2004.02.006
  • [99]Ru GP, Van Meirhaeghe RL, Forment S, Jiang YL, Qu XP et al. Voltage dependence of effective barrier heightreduction in inhomogeneous Schottky diodes. Solid-State Electron 2005; 49: 606-611. doi: 10.1016/j.sse.2004.12.005
  • [100]Gümüş A, Türüt A, Yalçin N. Temperature dependent barrier characteristics of CrNiCo alloy Schottky contactson n-type molecular-beam epitaxy GaAs. Journal of Applied Physics 2002; 91 (1): 245-250. doi: 10.1063/1.1424054
  • [101]Mahato S, Puigdollers J. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodesand the effect of transition metal oxides as an interface layer. Physica B: Condensed Matter 2018; 530: 327-335.doi: 10.1016/j.physb.2017.10.068
  • [102]Jiang YL, Ru GP, Lu F, Qu XP, Li BZ et al. Schottky barrier height inhomogeneity of Ti/n-GaAs contact studiedby the I-V-T technique. Chinese Physics Letters 2002; 19: 553-556. doi: 10.1088/0256-307X/19/4/332
  • [103]Hamida AF, Ouennoughi Z, Sellai A, Weiss R, Ryssel H. Barrier inhomogeneities of tungsten Schottky diodes on4H-SiC. Semiconductor Science and Technology 2008; 23 (1). doi: 10.1088/0268-1242/23/4/045005
  • [104]Abay B, Çankaya G, Güder HS, Efeoglu H, Yogurtçu YK. Barrier characteristics of Cd/p-GaTe Schottky diodesbased on I-V-T measurements. Semiconductor Science and Technology 2003; 18: 75-81. doi: 10.1088/0268-1242/18/2/302
  • [105]Song YP, Van Meirhaeghe RL, Laflère WH, Cardon F. On the difference in apparent barrier height as obtainedfrom capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid-StateElectron 1986; 29: 633-638. doi: 10.1016/0038-1101(86)90145-0
  • [106]Huang S, Banerjee S, Tung RT, Oda S. Electron trapping, storing, and emission in nanocrystalline Si dots bycapacitance-voltage and conductance-voltage measurements. Journal of Applied Physics 2003; 93: 576-581. doi:10.1063/1.1529094
  • [107]Weitering HH, Sullivan JP, Carolissen RJ, Pérez-Sandoz R, Graham WR et al. Inhomogeneous Schottky barriersat Ag/Si(111) and Ag/Si(100) interfaces. Journal of Applied Physics 1996; 79: 7820-7829. doi: 10.1063/1.362390
  • [108]Sullivan JP, Tung RT, Pinto MR, Graham WR. Electron transport of inhomogeneous Schottky barriers: a numericalstudy. Journal of Applied Physics 1991; 70: 7403-7424. doi: 10.1063/1.349737
  • [109]Gorji MS, Cheong KY. Embedded nanoparticles in schottky and ohmic contacts: a review. Critical Reviews inSolid State and Matterials Sciences 2015; 40: 197-222. doi: 10.1080/10408436.2014.940444
  • [110]Hecht MH, Bell LD, Kaiser WJ, Grunthaner FJ. Ballistic-electron-emission microscopy investigation of Schottkybarrier interface formation. Applied Physics Letter 1989; 55: 780-782. doi: 10.1063/1.101778
  • [111]Talin AA,Williams RS, Morgan BA, Ring KM, Kavanagh KL. Nanometer-resolved spatial variations in the Schottkybarrier height of a Au/n-type GaAs diode. Physical Review B 1994; 49: 16474. doi: 10.1103/PhysRevB.49.16474
  • [112]Iucolano F, Roccaforte F, Giannazzo F, Raineri V. Barrier inhomogeneity and electrical properties of PtGaNSchottky contacts. Journal of Applied Physics 2007; 102: 1-8. doi: 10.1063/1.2817647
  • [113]Roccaforte F, La Via F, Raineri V, Pierobon R, Zanoni E. Richardson’s constant in inhomogeneous silicon carbideSchottky contacts. Journal of Applied Physics 2003; 93: 9137-9144. doi: 10.1063/1.1573750
  • [114]Kumar M, Roul B, Bhat TN, Rajpalke MK, Kalghatgi AT et al. Barrier inhomogeneity and electrical propertiesof InN Nanodots/Si heterojunction diodes. Journal of Nanomaterials 2011; 2011. doi: 10.1155/2011/189731
  • [115]Gülnahar M, Efeoğlu H. Multiple-barrier distribution behavior of Mo/p-GaTe fabricated with sputtering. Journalof Alloys and Compounds 2011; 509: 7317-7323. doi: 10.1016/j.jallcom.2011.03.170
  • [116]Soylu M, Yakuphanoglu F. Analysis of barrier height inhomogeneity in Au/n-GaAs Schottky barrier diodes byTung model. Journal of Alloys and Compounds 2010; 506: 418-422. doi: 10.1016/j.jallcom.2010.07.019
  • [117]Kavasoglu N, Kavasoglu AS, Metin B. A different approach to solar cell simulation. Materials Research Bulletin2015; 70: 804-808. doi: 10.1016/j.materresbull.2015.06.007
  • [118]Ohdomari I, Tu KN. Parallel silicide contacts. Journal of Applied Physics 1980; 51: 3735-3739.doi: 10.1063/1.328160
  • [119]Horváth ZJ, Ayyildiz E, Rakovics V, Cetin H, Põdör B. Schottky contacts to InP. Physica Status Solidi (C) 2005;2 (1): 1423-1427. doi: 10.1002/pssc.200460479
  • [120]Horváth ZJ. Possible physical origins of non-ideal temperature dependence of current-voltage characteristics ofSchottky junctions. The Hungarian Academy of Sciences 2016: 227-230.
  • [121]Gassoumi M. Conductance deep-level transient spectroscopy and current transport mechanisms in Au|Pt|n-GaNSchottky barrier diodes. Physics of Solid State 2020; 62: 636-641. doi: 10.1134/S1063783420040095
  • [122]Donoval D, Barus M, Zdimal M. Analysis of I-V measurements on PtSi-Si Schottky structures in a wide temperaturerange. Solid-State Electronics 1991; 34: 1365-1373. doi: 10.1016/0038-1101(91)90031-S
  • [123]Werner JH, Güttler HH. Temperature dependence of Schottky barrier heights on silicon. Journal of Applied Physics1993; 73: 1315-1319. doi: 10.1063/1.353249
  • [124]Neamen DA. Semiconductor Physics and Devices Basic Principles. 4th ed. New York, NY, USA: McGraw-HillCompanies, Inc., 2006.
  • [125]Streetman BG, Banerjee SK. Solid State Electronic Devices. 7th ed. London, UK: Pearson Education Limited,2015.
  • [126]Cohen SS, Gildenblat GS. Metal-Semiconductor Contacts and Devices, Vol. 13. In: Einspruch NG (editor). 1st ed.Cambridge, MA, USA: Academic Press Book, 1986, p. 13.
  • [127]Türüt A, Bati B, Kökçe A, Saglam M, Yalçin N. The bias-dependence change of barrier height of Schottky diodesunder forward bias by including the series resistance effect. Physica Scripta 1996; 53: 118-122. doi: 10.1088/0031-8949/53/1/023
  • [128]Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E et al. Influence of surface cleaningeffects on properties of Schottky diodes on 4H-SiC. Applied Surface Science 2008; 254: 8106-8110. doi:10.1016/j.apsusc.2008.03.018
  • [129]Türüt A, Yalçin N, Saglam M. Parameter extraction from non-ideal C-V characteristics of a Schottky diode withand without interfacial layer. Solid-State Electronics 1992; 35: 835-841. doi: 10.1016/0038-1101(92)90286-L
  • [130]Saglam M, Türüt A. Aging effects on the interface state density obtained from current-voltage and capacitance-frequency characteristics of polypyrrole/p-Si/Al structure. Journal of Applied Polymer Science 2006; 101. doi:10.1002/app.23752
  • [131]Turut A, Saglam M, Efeoglu H, Yalcin N, Yildirim M et al. Interpreting the nonideal reverse bias C-V characteristicsand importance of the dependence of Schottky barrier height on applied voltage. Physica B: Condensed Matter 1995;205: 41-50. doi: 10.1016/0921-4526(94)00229-O
  • [132]Aydín ME, Akkílíç K, Kilicoglu T. The importance of the neutral region resistance for the calculation ofthe interface state in Pb/p-Si Schottky contacts. Physica B: Condensed Matter 2004;352 (1-4): 312-317. doi:10.1016/j.physb.2004.08.003
  • [133]Aydogan Ş, Saglam M, Türüt A, Onganer Y. The effects of the temperature on current-voltage characteristics ofSn/polypyrrole/n-Si structures. Synthetic Metals 2005; 150. doi: 10.1016/j.synthmet.2004.12.018
  • [134]Wu X, Yang ES. Interface capacitance in metal-semiconductor junctions. Journal of Applied Physics 1989; 65:3560-3567. doi: 10.1063/1.342631
  • [135]Wu X, Yang ES, Evans HL. Negative capacitance at metal-semiconductor interfaces. Journal of Applied Physics1990; 68: 2845-2848. doi: 10.1063/1.346442
  • [136]Çetin H, Şahin B, Ayyildiz E, Türüt A. Ti/p-Si Schottky barrier diodes with interfacial layer prepared by thermaloxidation. Physica B: Condensend Matter 2005; 364: 133-141. doi: 10.1016/j.physb.2005.04.001
  • [137]Lee TC, Chen TP, Au HL, Fung S, Beling CD. Temperature dependence of the ideality factor of GaAs and Sischottky diodes. Physica Status Solidi (A) 1995; 152: 563-571. doi: 10.1002/pssa.2211520225
  • [138]Chin VWL, Storey JWV, Green MA. P-type PtSi Schottky-diode barrier height determined from I-V measurement.Solid-State Electron 1989; 32: 475-478. doi: 10.1016/0038-1101(89)90029-4
  • [139]Ejderha K, Zengin A, Orak I, Tasyurek B, Kilinç T et al. Dependence of characteristic diode parameters onsample temperature in Ni/epitaxy n-Si contacts. Materials Science in Semiconductor Processing 2011; 14: 5-12. doi:10.1016/j.mssp.2010.12.010
  • [140]Horvath ZSJ. A new approach to temperature dependent ideality factors in Schottky contacts. Materials ResearchSociety Symposium Proceedings 1992; 260: 359-366.
  • [141]Orak İ, Caldiran Z, Bakir M, Cifci OS, Kocyigit A. The aromatic thermosetting copolyester for Schottky diodeapplications in a wide temperature range. Journal of Electronic Materials 2020; 49: 402-409. doi: 10.1007/s11664-019-07738-x
  • [142]Allen N, Ciarkowski T, Carlson E, Guido L. Characterization of inhomogeneous Ni/GaN Schottky diode with amodified log-normal distribution of barrier heights. Semiconducter Science and Technology 2019; 34: 95003. doi:10.1088/1361-6641/ab3071
  • [143]Nasrallah T Ben, Jemai M, Mahboub D, Belgacem S. Temperature effect on Al/p-CuInS2/SnO2 (F) Schottkydiodes. Engineering Technology & Applied Science Research. 2019; 9 (2): 4695-4701.
  • [144]Koteswara Rao Peta, Park BG, Lee ST, Kim MD, Oh JE. Temperature-dependent electrical propertiesof (Pt/Au)/Ga-polarity GaN/Si(1 1 1) Schottky diode. Microelectron Engineering 2012; 93: 100-104. doi:10.1016/j.mee.2011.11.019
  • [145]Arslan E, Altındal Ş, Özçelik S, Ozbay E. Tunneling current via dislocations in schottky diodes on AlInN/AlN/GaNheterostructures. Semiconductor Science and Technology 2009; 24 (4). doi: 10.1088/0268-1242/24/7/075003
  • [146]Turut A. Determination of barrier height temperature coefficient by Norde’s method in ideal Co/n-GaAs Schottkycontacts. Turkish Journal of Physics 2012; 36: 235-244. doi: 10.3906/fiz-1103-8
  • [147]Lauwers A, Kyllesbech Larsen K, Van Hove M, Verbeeck R, Maex K et al. Electrical transport in (100)CoSi2/Sicontacts. Journal of Applied Physics 1995; 77: 2525-2536. doi: 10.1063/1.358782
  • [148]Zhu S, Van Meirhaeghe RL, Detavernier C, Cardon F, Ru GP et al. Barrier height inhomogeneities of epitaxialCoSi2 Schottky contacts on n-Si (100) and (111). Solid-State Electron 2000; 44: 663-671. doi: 10.1016/S0038-1101(99)00268-3
  • [149]Kumar A, Sharma KK, Chand S. Analysis of anomalous transport mechanism across the interface ofAg/p-Si Schottky diode in wide temperature range. Superlattices Microstructures 2019; 128: 373-381. doi:10.1016/j.spmi.2019.02.014
  • [150]Coskun C, Biber M, Efeoglu H. Temperature dependence of current-voltage characteristics of Sn/p-GaTe Schottkydiodes. Applied Surface Science 2003; 211: 360-366. doi: 10.1016/S0169-4332(03)00267-8
  • [151]Dökme I, Altindal Ş, Bülbül MM. The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with nativeinsulator layer. Applied Surface Science 2006; 252: 7749-7754. doi: 10.1016/j.apsusc.2005.09.046
  • [152]Dökme I, Altındal Ş, Afandiyeva IM. The distribution of the barrier height in Al-TiW-Pd2Si/n-Si Schot-tky diodes from I-V-T measurements. Semiconductor Science and Technology 2008; 23 (3). doi: 10.1088/0268-1242/23/3/035003
  • [153]Tataroglu A, Altındal Ş. The distribution of barrier heights in MIS type Schottky diodes from current-voltage-temperature (I-V-T) measurements. Journal of Alloys and Compounds 2009; 479 (1-2): 893-897. doi:10.1016/j.jallcom.2009.01.098
  • [154]Kaya A, Demirezen S, Tecimer H, Altindal S. Temperature and voltage effect on barrier height and ideality factorin Au/PVC+TCNQ/p-Si structures. Advances in Polymer Technology 2014; 33 (S1): 1-9. doi: 10.1002/adv.21442
  • [155]Mönch W. On the band-structure lineup at Schottky contacts and semiconductor heterostructures. MaterialsScience in Semiconductor Processing 2014; 28: 2-12. doi: 10.1016/j.mssp.2014.03.024
  • [156]Kahveci O, Akkaya A, Ayyildiz E, Türüt A. Comparison of the ti/n-gaas schottky contacts’ parameters fabri-cated using dc magnetron sputtering and thermal evaporation. Surface Review and Letter 2017; 24: 1-9. doi:10.1142/S0218625X17500470
  • [157]Akkiliç K, Aydin ME, Türüt A. The effect of series resistance on the relationship between barrier heights andideality factors of inhomogeneous schottky barrier diodes. Physica Scripta 2004; 70: 364-367. doi: 10.1088/0031-8949/70/6/007
  • [158]Cimilli FE, Salam M, Türüt A. Determination of the lateral barrier height of inhomogeneous Au/n-typeInP/In Schottky barrier diodes. Semiconductor Science and Technology 2007; 22: 851-854. doi: 10.1088/0268-1242/22/8/003
  • [159]Baltakesmez A. Improved barrier parameters and working stability of Au/p-GO/n-lnP/Au–Ge Schottky barrierdiode with GO interlayer showing resistive switching effect. Vacuum 2019; 168. doi: 10.1016/j.vacuum.2019.108825
  • [160]Gunduz B, Yahia IS, Yakuphanoglu F. Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering 2012; 98: 41-57. doi:10.1016/j.mee.2012.06.003
  • [161]Sahin Y, Kacus H, Aydogan S, Yilmaz M, Incekara U. Enhanced electrical and optical characteristics of Co/phenolred (PR)/silicon hybrid heterojunction for photodiode and thermal applications. Journal of Electronic Materials2020; 49 (5): 4952-4961. doi: 10.1007/s11664-020-08217-4
  • [162]Hernández-Ochoa MA, Arizpe-Chávez H, Ramírez-Bon R, Pérez-Rodríguez A, Cortez-Valadez M et al. Current–voltage characterization of transparent ITO/ZnO:B/ZnO:(Al+In)/Ag Schottky diodes prepared with multilayerfilms by sol–gel deposition. Journal of Electronic Materials 2020; 49: 1993-2002. doi: 10.1007/s11664-019-07880-6
  • [163]Basman N, Varol SF. High temperature characterization of a MIS Schottky diode based on diamond-like carbonnanocomposite film. Journal of Electronic Materials 2019; 48: 7874-7881. doi: 10.1007/s11664-019-07621-9
  • [164]Gora VE, Auret FD, Danga HT, Tunhuma SM, Nyamhere C et al. Barrier height inhomogeneities on Pd/n-4H-SiC Schottky diodes in a wide temperature range. Materials Science and Engineering B 2019; 247: 1-5. doi:10.1016/j.mseb.2019.06.001
  • [165]Usami S, Ando Y, Tanaka A, Nagamatsu K, Deki M et al. Correlation between dislocations and leakage currentof p-n diodes on a free-standing GaN substrate. Applied Physics Letter 2018; 112. doi: 10.1063/1.5024704
  • [166]Horváth ZJ, Rakovics V, Szentpáli B, Püspöki S, ￿d’ánskıK. InP Schottky junctions for zero bias detector diodes.Vacuum 2003; 71: 113-116. doi: 10.1016/S0042-207X(02)00723-6
  • [167]Yıldırım N, Türüt A. A theoretical analysis together with experimental data of inhomogeneous Schottky barrierdiodes. Microelectronic Engineering 2009; 86 (11): 2270-2274. doi: 10.1016/j.mee.2009.04.003
  • [168]Yıldırım N, Turut A, Turut V. The theoretical and experimental study on double-Gaussian distributionin inhomogeneous barrier-height Schottky contacts. Microelectronic Engineering 2010; 87: 2225-2229. doi:10.1016/j.mee.2010.02.007
  • [169]Yüksel OF, Tugluoglu N, Şafak H, Nalçacıgil Z, Kuş M et al. Analysis of temperature dependent electrical propertiesof Au/perylene-diimide/n-Si Schottky diodes. Thin Solid Films 2013; 534: 614-620. doi: 10.1016/j.tsf.2013.02.042
  • [170]Kiziroglou ME, Zhukov AA, Li X, Gonzalez DC, De Groot PAJ et al. Analysis of thermionic emission from elec-trodeposited Ni-Si Schottky barriers. Solid State Communications 2006; 140: 508-513. doi: 10.1016/j.ssc.2006.09.027
  • [171]Yüksel OF, Tugluoglu N, Gülveren B, Şafak H, Kuş M. Electrical properties of Au/perylene-monoimide/p-SiSchottky diode. Journal of Alloys and Compounds 2013; 577: 30-36. doi: 10.1016/j.jallcom.2013.04.157
  • [172]Horváth ZJ, Rakovics V, Szentpáli B, Püspöki S. Schottky junctions on n-type InP for zero bias microwavedetectors. Physica Status Solidi (C) 2003; 921: 916-921. doi: 10.1002/pssc.200306225
  • [173]Yıldırım N, Turut A, Biber M, Saglam M, Guzeldir B. The electrical current characteristics of thermally annealedCo/anodic oxide layer/n-GaAs sandwich structures. International Journal of Modern Physics B 2019; 33: 1-13. doi:10.1142/S0217979219502321
  • [174]Arulkumaran S, Egawa T, Ishikawa H, Umeno M, Jimbo T. Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89NSchottky diodes. IEEE Transactions Electron Devices 2001; 48: 573-580. doi: 10.1109/16.906453
  • [175]Vurgaftman I, Meyer JR, Ram-Mohan LR. Band parameters for III-V compound semiconductors and their alloys.Journal of Applied Physics 2001; 89: 5815-5875. doi: 10.1063/1.1368156
  • [176]Missous M, Rhoderick EH, Woolf DA, Wilkes SP. On the Richardson constant of intimate metal-GaAs Schottkybarriers. Semiconductor Science and Technology 1992; 7: 218-221. doi: 10.1088/0268-1242/7/2/007
  • [177]Ayyildiz E, Cetin H, Horváth ZJ. Temperature dependent electrical characteristics of Sn/p-Si Schottky diodes.Applied Surface Science 2005; 252: 1153-1158. doi: 10.1016/j.apsusc.2005.02.044
  • [178]Tan SO, Tecimer H, Çiçek O. Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Transactions Electron Devices 2017; 64: 984-990. doi: 10.1109/TED.2016.2647380
  • [179]Osvald J, Horváth ZJ. Theoretical study of the temperature dependence of electrical characteristics ofSchottky diodes with an inverse near-surface layer. Applied Surface Science 2004; 234: 349-354. doi:10.1016/j.apsusc.2004.05.046
  • [180]Pattabi M, Krishnan S, Ganesh, Mathew X. Effect of temperature and electron irradiation on the I-V characteristicsof Au/CdTe Schottky diodes. Solar Energy 2007; 81 (1): 111-116. doi: 10.1016/j.solener.2006.06.004
  • [181]Çaldıran Z, Aydoğan S, Yesildag A, Ekinci D, Kurudirek SV et al. Temperature-dependent current-voltage mea-surements of Au/C9H7N/p-Si: Characterization of a metal-organic-semiconductor device. Materials Science inSemiconductor Processing 2015; 34: 58-64. doi: 10.1016/j.mssp.2015.02.023
  • [182]Dökme I, Altindal Ş. On the intersecting behaviour of experimental forward bias current-voltage (I-V) characteris-tics of Al/SiO2/p-Si (MIS) Schottky diodes at low temperatures. Semiconductor Science and Technology 2006; 21:1053-1058. doi: 10.1088/0268-1242/21/8/012
  • [183]Dmitruk NL, Borkovskaya OY, Dmitruk IN, Mamykin S V, Horvath ZJ et al. Morphology and interfacial propertiesof microrelief metal-semiconductor interface. Applied Surface Science 2002; 190: 455-460. doi: 10.1016/S0169-4332(01)00918-7
  • [184]Durmuş H, Kılıç HŞ, Gezgin SY, Karataş Ş. Analysis of current-voltage-temperature and capacitance-voltage-temperature characteristics of Re/n-Si Schottky contacts. Silicon 2018; 10: 361-369. doi: 10.1007/s12633-016-9456-2
  • [185]Özdemir AF, Turut A, Kökçe A. The double Gaussian distribution of barrier heights in Au/n-GaAs Schottkydiodes from I-V-T characteristics. Semiconductor Science and Technology 2006; 21: 298-302. doi: 10.1088/0268-1242/21/3/016
  • [186]Akkaya A, Esmer L, Karaaslan T, Çetin H, Ayy E. Electrical characterization of Ni / Al 0 . 09 Ga 0 . 91 N Schottkybarrier. Materials Science in Semiconductor Processing 2014; 28: 127-134. doi: 10.1016/j.mssp.2014.07.053
  • [187]Chand S, Kumar J. Electron transport and barrier inhomogeneities in palladium suicide Schottky diodes. AppliedPhysics A 1997; 65: 497-503. doi: 10.1007/s003390050614.
  • [188]Vanalme GM, Goubertt L, Van Meirhaeghe RL, Cardon F, Van Daele P. Ballistic electron emission microscopystudy of barrier height inhomogeneities introduced in Au/III-V semiconductor Schottky barrier contacts by chemicalpretreatments. Semiconductor Science and Technology 1999; 14: 871-877. doi: 10.1088/0268-1242/14/9/321
  • [189]Korucu D, Duman S, Turut A. The origin of forward bias capacitance peak and voltage dependent behaviourof gold/p-type indium phosphide Schottky barrier diode fabricated by photolithography. Materials Science inSemiconductor Processing 2015; 30: 393-399. doi: 10.1016/j.mssp.2014.10.043
  • [190]Vanalme GM, Van Meirhaeghe RL, Cardon F, Van Daele P. A ballistic electron emission microscopy (BEEM) studyof the barrier height change of Au/n-GaAs Schottky barriers due to reactive ion etching. Semiconductor Scienceand Technology 1997; 12 (4): 907-912. doi: 10.1088/0268-1242/12/7/023
  • [191]Chand S, Kumar J. Evidence for the double distribution of barrier heights in Pd2Si/n-Si Schottky diodes from I-V-Tmeasurements. Semiconductor Science and Technology 1996; 11: 1203-1208. doi: 10.1088/0268-1242/11/8/015
  • [192]Dasaradha Rao L, Rajagopal Reddy V, Janardhanam V, Kang MS, Son BC et al. Electrical and structural prop-erties of rapidly annealed rare-earth metal Er Schottky contacts on p-type InP. Superlattices and Microstructures2014; 65: 206-218. doi: 10.1016/j.spmi.2013.10.043
  • [193]Turut A, Ejderha K, Yildirim N, Abay B. Characteristic diode parameters in thermally annealed Ni/p-InP contacts.Journal of Semiconductors 2016; 37 (1). doi: 10.1088/1674-4926/37/4/044001
  • [194]Yildirim N, Turut A, Dogan H. current-voltage characteristics of thermally annealed ni/ n -gaas schottky contacts.Surface Review and Letters 2018; 25 (1): 1-9. doi: 10.1142/S0218625X18500828
  • [195]Bohlin KE. Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics 1986;60: 1223-1224. doi: 10.1063/1.337372
  • [196]Basman N, Uzun R, Ozcakır R, Erol I, Cankaya G et al. Effect of a new methacrylic monomer on diode parametersof Ag/p-Si Schottky contact. Journal of Microelectronics, Electronic Components and Materials 2016; 46 (1):190-196.
  • [197]Güzeldir B, Saglam M, Ateş A, Türüt A. Determination of the some electronic parameters of nanostructurecopper selenide and Cu/Cu3Se2/n-GaAs/In structure. Journal of Alloys and Compounds 2015; 627: 200-205. doi:10.1016/j.jallcom.2014.11.182
  • [198]Karabulut A. Barrier height modification in Au/Ti/n-GaAs devices with a HfO2 interfacial layer formed by atomiclayer deposition. Bulletin of Material Science 2019; 42: 1-11. doi: 10.1007/s12034-018-1696-x
  • [199]Saadaoui S, Mongi Ben Salem M, Gassoumi M, Maaref H, Gaquière C. Electrical characterization of(Ni/Au)/Al0.25Ga 0.75N/GaN/SiC Schottky barrier diode. Journal of Applied Physics 2011; 110: 1-6. doi:10.1063/1.3600229
  • [200]Biyikli N, Karabulut A, Efeolu H, Guzeldir B, Turut A. Electrical characteristics of Au/Ti/n-GaAs contacts overa wide measurement temperature range. Physica Scripta 2014; 89 (6). doi: 10.1088/0031-8949/89/9/095804
  • [201]Kaushal P, Chand S, Osvald J. Current-voltage characteristics of Schottky diode simulated using semiconductordevice equations. International Journal of Electronics 2013; 100: 686-698. doi: 10.1080/00207217.2012.720946
  • [202]Hattab A, Aubry-Fortuna V, Meyer F, Yam V, Le Thanh V et al. Schottky-barrier height inhomogeneities controlledby buried Ge/Si quantum dots. Microelectronic Engineering 2002; 64: 435-441. doi: 10.1016/S0167-9317(02)00818-3
  • [203]Saglam M, Ayyildiz E, Gümüs A, Türüt A, Efeoglu H et al. Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes. Applied Physics A 1996; 62: 269-273. doi: 10.1007/s003390050297
  • [204]Aksoy S, Caglar Y. Structural transformations of TiO2 films with deposition temperature and electrical propertiesof nanostructure n-TiO2/p-Si heterojunction diode. Journal of Alloys and Compounds 2014; 613: 330-337. doi:10.1016/j.jallcom.2014.05.192
  • [205]Basman N, Aslan N, Uzun O, Cankaya G, Kolemen U. Electrical characterization of metal/diamond-like car-bon/inorganic semiconductor MIS Schottky barrier diodes. Microelectronic Engineering 2015; 140: 18-22. doi:10.1016/j.mee.2015.05.001
  • [206]Gencer Imer A, Korkut A, Farooq WA, Dere A, Atif M et al. Interface controlling study of silicon based Schot-tky diode by organic layer. Journal of Materials Science: Materials in Electronics 2019; 30: 19239-19246. doi:0.1007/s10854-019-02282-0
  • [207]Dogan H, Yildirim N, Turut A, Biber M, Ayyildiz E et all. Determination of the characteristic parameters of Sn/n-GaAs/Al-Ge Schottky diodes by a barrier height inhomogeneity model. Semiconductor Science and Technology2006; 21: 822-828. doi: 10.1088/0268-1242/21/6/021
  • [208]Fiat S, Bacaksiz E, Kompitsas M, Çankaya G. Temperature and tellurium (Te) dependence of electrical characteri-zation and surface properties for a chalcopyrite structured schottky barrier diode. Journal of Alloys and Compounds2014; 585: 178-184. doi: 10.1016/j.jallcom.2013.09.123
  • [209]Rossi RC, Tan MX, Lewis NS. Size-dependent electrical behavior of spatially inhomogeneous barrier height regionson silicon. Applied Physics Letter 2000;77: 2698-2700. doi: 10.1063/1.1319534
  • [210]Chand S. An accurate approach for analysing an inhomogeneous Schottky diode with a Gaussian distribution ofbarrier heights. Semiconductor Science and Technology 2002; 17: 36-40. doi: 10.1088/0268-1242/17/7/103
  • [211]Chand S. On the intersecting behaviour of current-voltage characteristics of inhomogeneous Schottky diodes atlow temperatures. Semiconductor Science and Technology 2004; 19: 82-86. doi: 10.1088/0268-1242/19/1/014
  • [212]Ru GP, Yu R, Jiang YL, Ruan G. Thermal activation of current in an inhomogeneous Schottky diode with aGaussian distribution of barrier height. Chinese Physics B 2010; 19. doi: 10.1088/1674-1056/19/9/097304
  • [213]Osvald J. New aspects of the temperature dependence of the current in inhomogeneous Schottky diodes. Semicon-ductor Science and Technology 2003; 18. doi: 10.1088/0268-1242/18/4/103
  • [214]Chand S. Theoretical evidence for random variation of series resistance of elementary diodes in inhomogeneousSchottky contacts. Physica B: Condensed Matter 2006; 373: 284-290. doi: 10.1016/j.physb.2005.11.165
  • [215]Osvald J. Series resistance influence on intersecting behaviour of inhomogeneous Schottky diodes I-V curves. Solid-State Electronics 2006;50:228–31. doi: 10.1016/j.sse.2005.11.004
  • [216]Newman N, Van Schilfgaarde M, Kendelwicz T, Williams MD, Spicer WE. Electrical study of Schottky barrierson atomically clean GaAs(110) surfaces. Physical Review B 1986; 33: 1146-1159. doi: 10.1103/PhysRevB.33.1146
  • [217]Chand S, Bala S. A comparative study of numerical and analytical methods of simulating inhomogeneousSchottky diode characteristics. Semiconductor Science and Technology 2005; 20: 1143-1148. doi: 10.1088/0268-1242/20/11/008
  • [218]Osvald J. Influence of lateral current spreading on the apparent barrier parameters of inhomogeneous Schottkydiodes. Journal of Applied Physics 2006; 99: 1-5. doi: 10.1063/1.2169879
  • [219]Temirci C, Çakar M, Türüt A, Onganer Y. Low- And high-frequency C-V characteristics of the contacts formedby sublimation of the nonpolymeric organic compound on p-type Si substrate. Physica Status Solidi (A) 2004; 201:3077-3086. doi: 10.1002/pssa.200406874
  • [220]Fonash SJ. A reevaluation of the meaning of capacitance plots for Schottky-barrier- type diodes. Journal of AppliedPhysics 1983; 54: 1966-1975. doi: 10.1063/1.332251
  • [221]Erdal MO, Kocyigit A, Yıldırım M. The rate of Cu doped TiO2 interlayer effects on the electrical characteristics ofAl/Cu:TiO2/n-Si (MOS) capacitors depend on frequency and voltage. Microelectronics Reliability 2020; 106. doi:10.1016/j.microrel.2020.113591
  • [222]Imer AG, Gülcan M, Çelebi M, Tombak A, Ocak YS. Effects of the r-GO doping on the structural, opticaland electrical properties of CdO nanostructured films by ultrasonic spray pyrolysis. Journal of Materials Science:Materials in Electronics 2020; 31: 2111-2221. doi: 10.1007/s10854-019-02732-9
  • [223]Turut A, Yıldız DE, Karabulut A, Orak I. Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. Journal of Materials Science: Materials in Electronics 2020; 31:7839-7849. doi: 10.1007/s10854-020-03322-w
  • [224]Manjunath V, Rajagopal Reddy V, Sekhar Reddy PR, Janardhanam V, Choi CJ. Electrical and frequency-dependent properties of Au/Sm2O3/n-GaN MIS junction with a high-k rare-earth Sm2O3 as interlayer. CurrentApplied Physics 2017; 17: 980-988. doi: 10.1016/j.cap.2017.03.023
  • [225]Kumar R, Chand S. Structural, optical, and electrical characterization of Al/n-ZnO/p-Si/Al heterostructures.Journal of Electronic Materials 2015; 44: 194-201. doi: 10.1007/s11664-014-3502-x
  • [226]Tung RT, Levi AFJ, Sullivan JP, Schrey F. Schottky-barrier inhomogeneity at epitaxial NiSi2 interfaces on Si(100).Physical Review Letters 1991; 66: 72-75. doi: 10.1103/PhysRevLett.66.72
  • [227]Bati B, Nuhoğlu Ç, Sağlam M, Ayyildiz E, Türüt A. On the forward bias excess capacitance at intimate andMIS Schottky barrier diodes with perfect or imperfect ohmic back contact. Physica Scripta 2000; 61: 209-212. doi:10.1238/physica.regular.061a00209
  • [228]Werner J, Levi AFJ, Tung RT, Anzlowar M, Pinto M. Origin of the excess capacitance at intimate Schottkycontacts. Physical Review Letters 1988; 60: 53-56. doi: 10.1103/PhysRevLett.60.53.
  • [229]Ouennoughi Z, Sellai A. MIS tunnel admittance with an inhomogeneous dielectric. International Journal ofElectronics 1997; 83: 571-580. doi: 10.1080/002072197135148
  • [230]Korošak D, Cvikl B. Admittance spectroscopy of metal-semiconductor interfaces prepared by ionized cluster beamtechnique. Vacuum 2003; 71: 123-128. doi: 10.1016/S0042-207X(02)00725-X
  • [231]Karataş Ş, Türüt A. The determination of interface state energy distribution of the H-terminated Zn/p-typeSi Schottky diodes with high series resistance by the admittance spectroscopy. Vacuum 2004; 74: 45-53. doi:10.1016/j.vacuum.2003.11.006
  • [232]Karataş Ş, Altindal Ş, Türüt A, Özmen A. Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts. Applied Surface Science 2003; 217: 250-260. doi: 10.1016/S0169-4332(03)00564-6
  • [233]Osvald J, Burian E. C-V dependence of inhomogeneous Schottky diodes. Solid-State Electronics 1998; 42: 191-195.doi: 10.1016/S0038-1101(97)00229-3
  • [234]Osvald J. Numerical study of electrical transport in inhomogeneous Schottky diodes. Journal of Applied Physics1999; 85: 1935-1942. doi: 10.1063/1.369185
  • [235]Duman S, Gür E, Dogan S, Tüzemen S. Temperature dependent capacitance and DLTS studies of Ni/n-type6H-SiC Schottky diode. Current Applied Physics 2009; 9: 1181-1185. doi: 10.1016/j.cap.2009.01.009
  • [236]Aboelfotoh MO, Fröjdh C, Petersson CS. Schottky-barrier behavior of metals on n- and p-type (formula presented).Physical Review B - Condensed Matter and Materials Physics 2003; 67: 1-7. doi: 10.1103/PhysRevB.67.075312
APA TÜRÜT A (2020). On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. , 302 - 347.
Chicago TÜRÜT Abdulmecit On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. (2020): 302 - 347.
MLA TÜRÜT Abdulmecit On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. , 2020, ss.302 - 347.
AMA TÜRÜT A On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. . 2020; 302 - 347.
Vancouver TÜRÜT A On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. . 2020; 302 - 347.
IEEE TÜRÜT A "On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts." , ss.302 - 347, 2020.
ISNAD TÜRÜT, Abdulmecit. "On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts". (2020), 302-347.
APA TÜRÜT A (2020). On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, 44(4), 302 - 347.
Chicago TÜRÜT Abdulmecit On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics 44, no.4 (2020): 302 - 347.
MLA TÜRÜT Abdulmecit On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics, vol.44, no.4, 2020, ss.302 - 347.
AMA TÜRÜT A On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics. 2020; 44(4): 302 - 347.
Vancouver TÜRÜT A On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turkish Journal of Physics. 2020; 44(4): 302 - 347.
IEEE TÜRÜT A "On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts." Turkish Journal of Physics, 44, ss.302 - 347, 2020.
ISNAD TÜRÜT, Abdulmecit. "On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts". Turkish Journal of Physics 44/4 (2020), 302-347.