Yıl: 2020 Cilt: 44 Sayı: 4 Sayfa Aralığı: 394 - 403 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Network dynamics reconstruction from data

Öz:
We consider the problem of recovering the model of a complex network of interacting dynamical units from time series of observations. We focus on typical networks which exhibit heterogeneous degrees, i.e. where the number of connections varies widely across the network, and the coupling strength for a single interaction is small. In these networks, the behavior of each unit varies according to their connectivity. Under these mild assumptions, our method provides an effective network reconstruction of the network dynamics. The method is robust to a certain size of noise and only requires relatively short time series on the state variable of most nodes to determine: how well-connected a particular node is, the distribution of the nodes’ degrees in the network, and the underlying dynamics.
Anahtar Kelime: Dynamical systems complex networks .

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]Bohland JW, Wu C, Barbas H, Bokil H, Bota M et al. A proposal for a coordinated effort for the determinationof brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Computational Biology2009; 5 (3).
  • [2]Yadav P, McCann JA, Pereira T. Self-synchronization in duty-cycled Internet of Things (IoT) applications. IEEEInternet of Things Journal 2017; 4 (6): 2058-2069.
  • [3]Dörfler F, Chertkov M, Bullo F. Synchronization in complex oscillator networks and smart grids. Proceedings ofthe National Academy of Sciences 2013; 110 (6): 2005-2010.
  • [4]Komar P, Kessler EM, Bishof M, Jiang L, Sørensen AS et al. A quantum network of clocks. Nature Physics 2014;10 (8): 582-587.
  • [5]Watanabe S, Strogatz SH. Constants of motion for superconducting Josephson arrays. Physica D: NonlinearPhenomena 1994; 74 (3-4): 197-253.
  • [6]Néda Z, Ravasz E, Brechet Y, Vicsek T, Barabási AL. The sound of many hands clapping. Nature 2000; 403(6772):849-850.
  • [7]Blasius B, Huppert A, Stone L. Complex dynamics and phase synchronization in spatially extended ecologicalsystems. Nature 1999; 399 (6734): 354-359.
  • [8]Winfree AT. The geometry of biological time. Berlin, Germany: Springer Science & Business Media, 2001.
  • [9]Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science 2013; 342(6158): 1238411.
  • [10]Pereira T, Van Strien S, Tanzi M. Heterogeneously coupled maps: hub dynamics and emergence across connectivitylayers. arXiv 2017; arXiv: 1704.06163.
  • [11]Gardner TS, Di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode ofaction via expression profiling. Science 2003; 301 (5629): 102-105.
  • [12]Sauer TD. Reconstruction of shared nonlinear dynamics in a network. Physical Review Letters 2004; 93 (19):198701.
  • [13]Schneidman E, Berry MJ, Segev R, Bialek W. Weak pairwise correlations imply strongly correlated network statesin a neural population. Nature 2006; 440 (7087): 1007-1012.
  • [14]Tokuda IT, Jain S, Kiss IZ, Hudson JL. Inferring phase equations from multivariate time series. Physical ReviewLetters 2007; 99 (6): 064101.
  • [15]Ren J, Wang WX, Li B, Lai YC. Noise bridges dynamical correlation and topology in coupled oscillator networks.Physical Review Letters 2010; 104 (5): 058701.
  • [16]Levnajić Z, Pikovsky A. Network reconstruction from random phase resetting. Physical Review Letters 2011; 107(3): 034101.
  • [17]Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Phase dynamics of coupled oscillatorsreconstructed from data. Physical Review E 2008; 77 (6): 066205.
  • [18]Penny WD, Litvak V, Fuentemilla L, Duzel E, Friston K. Dynamic causal models for phase coupling. Journal ofNeuroscience Methods 2009; 183 (1): 19-30.
  • [19]Kralemann B, Pikovsky A, Rosenblum M. Reconstructing phase dynamics of oscillator networks. Chaos: AnInterdisciplinary Journal of Nonlinear Science 2011; 21 (2): 025104.
  • [20]Kralemann B, Frühwirth M, Pikovsky A, Rosenblum M, Kenner T et al. In vivo cardiac phase response curveelucidates human respiratory heart rate variability. Nature Communications 2013; 4 (1): 1-9.
  • [21]Stankovski T, Duggento A, McClintock PV, Stefanovska A. Inference of time-evolving coupled dynamical systemsin the presence of noise. Physical Review Letters 2012; 109 (2): 024101.
  • [22]Ota K, Aoyagi T. Direct extraction of phase dynamics from fluctuating rhythmic data based on a Bayesian approach.arXiv 2014; arXiv: 1405.4126.
  • [23]Cestnik, R, Rosenblum M. Reconstructing networks of pulse-coupled oscillators from spike trains. Physical ReviewE 2017; 96 (1): 012209.
  • [24]Wilmer A, De Lussanet M, Lappe M. Time-delayed mutual information of the phase as a measure of functionalconnectivity. PLoS One 2012; 7 (9).
  • [25]Lobier M, Siebenhühner F, Palva S, Palva JM. Phase transfer entropy: a novel phase-based measure for directedconnectivity in networks coupled by oscillatory interactions. Neuroimage 2014; 85: 853-872.
  • [26]Casadiego J, Nitzan M, Hallerberg S, Timme M. Model-free inference of direct network interactions from nonlinearcollective dynamics. Nature Communications 2017; 8 (1): 1-10.
  • [27]Zamora-López G, Zhou C, Kurths J. Cortical hubs form a module for multisensory integration on top of the hierarchyof cortical networks. Frontiers in Neuroinformatics 2010; 4: 1.
  • [28]Izhikevich EM. Dynamical systems in neuroscience. Cambridge, MA, USA: MIT Press, 2007.
  • [29]Pinto RD, Varona P, Volkovskii AR, Szücs A, Abarbanel HD et al. Synchronous behavior of two coupled electronicneurons. Physical Review E 2000; 62 (2): 2644.
  • [30]Eroglu D, Lamb JS, Pereira T. Synchronisation of chaos and its applications. Contemporary Physics 2017; 58 (3):207-243.
  • [31]Bettinardi RG, Deco G, Karlaftis VM, Van Hartevelt TJ, Fernandes HM et al. How structure sculpts function:unveiling the contribution of anatomical connectivity to the brain’s spontaneous correlation structure. Chaos: AnInterdisciplinary Journal of Nonlinear Science 2017; 27 (4): 047409.
  • [32]Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. Scale-free brain functional networks. Physical ReviewLetters 2005; 94 (1): 018102.
  • [33]Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems.Nature Reviews Neuroscience 2009; 10 (3): 186-198.
  • [34]Zhang J, Small M. Complex network from pseudoperiodic time series: Topology versus dynamics. Physical ReviewLetters 2006; 96 (23): 238701.
  • [35]Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis ofthe default mode hypothesis. Proceedings of the National Academy of Sciences 2003; 100 (1): 253-258.
  • [36]Chung F, Lu L. Complex graphs and networks. Providence, RI, USA: American Mathematical Society, 2006.
  • [37]Pereira T. Hub synchronization in scale-free networks. Physical Review E 2010; 82 (3): 036201.
  • [38]Eroglu D, Tanzi M, Van Strien S, Pereira T. Revealing dynamics, communities, and criticality from data. PhysicalReview X 2020; 10: 021047.
APA Eroglu D (2020). Network dynamics reconstruction from data. , 394 - 403.
Chicago Eroglu Deniz Network dynamics reconstruction from data. (2020): 394 - 403.
MLA Eroglu Deniz Network dynamics reconstruction from data. , 2020, ss.394 - 403.
AMA Eroglu D Network dynamics reconstruction from data. . 2020; 394 - 403.
Vancouver Eroglu D Network dynamics reconstruction from data. . 2020; 394 - 403.
IEEE Eroglu D "Network dynamics reconstruction from data." , ss.394 - 403, 2020.
ISNAD Eroglu, Deniz. "Network dynamics reconstruction from data". (2020), 394-403.
APA Eroglu D (2020). Network dynamics reconstruction from data. Turkish Journal of Physics, 44(4), 394 - 403.
Chicago Eroglu Deniz Network dynamics reconstruction from data. Turkish Journal of Physics 44, no.4 (2020): 394 - 403.
MLA Eroglu Deniz Network dynamics reconstruction from data. Turkish Journal of Physics, vol.44, no.4, 2020, ss.394 - 403.
AMA Eroglu D Network dynamics reconstruction from data. Turkish Journal of Physics. 2020; 44(4): 394 - 403.
Vancouver Eroglu D Network dynamics reconstruction from data. Turkish Journal of Physics. 2020; 44(4): 394 - 403.
IEEE Eroglu D "Network dynamics reconstruction from data." Turkish Journal of Physics, 44, ss.394 - 403, 2020.
ISNAD Eroglu, Deniz. "Network dynamics reconstruction from data". Turkish Journal of Physics 44/4 (2020), 394-403.