Yıl: 2020 Cilt: 44 Sayı: 5 Sayfa Aralığı: 215 - 229 Metin Dili: İngilizce DOI: 10.3906/biy-2003-9 İndeks Tarihi: 29-07-2022

Regulation of E2F1 activity via PKA-mediated phosphorylations

Öz:
E2F1 becomes activated during the G1 phase of the cell cycle, and posttranslational modifications modulate its activity.Activation of G-protein coupled receptors (GPCR) by many ligands induces the activation of adenylate cyclases and the production ofcAMP, which activates the PKA enzyme. Activated PKA elicits its biological effect by phosphorylating the target proteins containingserine or threonine amino acids in the RxxS/T motif. Since PKA activation negatively regulates cell proliferation, we thought thatactivated PKA would negatively affect the activity of E2F1. In line with this, when we analyzed the amino acid sequence of E2F1,we found 3 hypothetical consensus PKA phosphorylation sites located at 127-130, 232-235, and 361-364 positions and RYET, RLLS,and RMGS sequences. After showing the binding and phosphorylation of E2F1 by PKA, we converted the codons of Threonine-130,Serine-235, and Serine-364 to Alanine and Glutamic acid codons on the eukaryotic E2F1 expression vector we had previously created.We confirmed the phosphorylation of T130, S235, and S364 by developing monoclonal antibodies against phospho-specific forms ofthese sites and showed that their phosphorylation is cell cycle-dependent. According to our results, PKA-mediated phosphorylation ofE2F1 by PKA inhibits proliferation and glucose uptake and induces caspase-3 activation and senescence.
Anahtar Kelime: forskolin senescence E2F1 proliferation cell cycle PKA

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anghileri P, Branduardi P, Sternieri F, Monti P, Visintin R et al. (1999). Chromosome separation and exit from mitosis in budding yeast: dependence on growth revealed by cAMPmediated inhibition. Experimental Cell Research 250: 510-523.
  • Aoki I, Higuchi M, Gotoh Y (2013). NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene 32: 3954-3964.
  • Bagchi S, Raychaudhuri P, Nevins JR (1989). Phosphorylationdependent activation of the adenovirus-inducible E2F transcription factor in a cell-free system. Proceedings of the National Academy of Sciences of the United States of America 86: 4352-4356.
  • Bandara LR, La Thangue NB (1991). Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494-497.
  • Berger B, Capper D, Lemke D, Pfenning PN, Platten M et al. (2010). Defective p53 antiangiogenic signaling in glioblastoma. NeuroOncology 12: 894-907.
  • Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clape C et al. (2011). E2F transcription factor-1 regulates oxidative metabolism. Nature Cell Biology 13: 1146-1152.
  • Chen D, Padiernos E, Ding F, Lossos IS, Lopez CD (2005). Apoptosisstimulating protein of p53-2 (ASPP2/53BP2L) is an E2F target gene. Cell Death and Differentiation 12: 358-368.
  • Chen G, Deng X (2018). Cell synchronization by double thymidine block. Bio Protocol 8 (17): e2994.
  • Costanzo V, Avvedimento EV, Gottesman ME, Gautier J, Grieco D (1999). Protein kinase A is required for chromosomal DNA replication. Current Biology 9: 903-906.
  • Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S et al. (2007). Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proceedings of the National Academy of Sciences of the United States of America 104: 10703-10708.
  • DeGregori J, Kowalik T, Nevins JR (1995). Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Molecular and Cellular Biology 15: 4215-4224.
  • Ertosun MG, Hapil FZ, Ozes ON (2016). E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine and Growth Factor Reviews 31: 17-25.
  • Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC et al. (2016). AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7: 17815-17828.
  • Garcia-Alvarez G, Ventura V, Ros O, Aligue R, Gil J et al. (2007). Glycogen synthase kinase-3beta binds to E2F1 and regulates its transcriptional activity. Biochimica et Biophysica Acta 1773: 375-382.
  • Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N (2011). The role of the E2F transcription factor family in UV-induced apoptosis. International Journal of Molecular Sciences 12: 8947-8960.
  • Helin K, Harlow E, Fattaey A (1993). Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Molecular and Cellular Biology 13: 6501-6508.
  • Hsieh MC, Das D, Sambandam N, Zhang MQ, Nahle Z (2008). Regulation of the PDK4 isozyme by the Rb-E2F1 complex. Journal of Biological Chemistry 283: 27410-27417.
  • Iaquinta PJ, Lees JA (2007). Life and death decisions by the E2F transcription factors. Current Opinion in Cell Biology 19: 649- 657.
  • Inoshita S, Terada Y, Nakashima O, Kuwahara M, Sasaki S et al. (1999). Roles of E2F1 in mesangial cell proliferation in vitro. Kidney International 56: 2085-2095.
  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645-648.
  • Ivanova IA, Nakrieko KA, Dagnino L (2009). Phosphorylation by p38 MAP kinase is required for E2F1 degradation and keratinocyte differentiation. Oncogene 28: 52-62.
  • Jensen J (2007). More PKA independent beta-adrenergic signalling via cAMP: is Rap1-mediated glucose uptake in vascular smooth cells physiologically important? British Journal of Pharmacology 151: 423-425.
  • Jewell JL, Fu V, Hong AW, Yu FX, Meng D et al. (2019). GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. eLife 8: e43038.
  • Johnson JL, Pillai S, Pernazza D, Sebti SM, Lawrence NJ et al. (2012). Regulation of matrix metalloproteinase genes by E2F transcription factors: Rb-Raf-1 interaction as a novel target for metastatic disease. Cancer Research 72: 516-526.
  • Kaelin Jr WG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F et al. (1992). Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70: 351-364.
  • Kaihara KA, Dickson LM, Ellenbroek JH, Orr CM, Layden BT et al. (2015). PKA enhances the acute insulin response leading to the restoration of glucose control. Diabetes 64: 1688-1697.
  • Kontaki H, Talianidis I (2010). Lysine methylation regulates E2F1- induced cell death. Molecular Cell 39: 152-160.
  • Kovesdi I, Reichel R, Nevins JR (1986). Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45: 219-228.
  • Kumari A, Iwasaki T, Pyndiah S, Cassimere EK, Palani CD et al. (2015). Regulation of E2F1-induced apoptosis by poly(ADPribosyl)ation. Cell Death and Differentiation 22: 311-322.
  • Lin WC, Lin FT, Nevins JR (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes and Development 15: 1833-1844.
  • Lindstrom MS, Wiman KG (2003). Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22: 4993-5005.
  • Ma Y, Croxton R, Moorer Jr RL, Cress WD (2002). Identification of novel E2F1-regulated genes by microarray. Archives of Biochemistry and Biophysics 399: 212-224.
  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K et al. (2000). E2F family members are differentially regulated by reversible acetylation. Journal of Biological Chemistry 275: 10887-10892.
  • Medina EA, Oberheu K, Polusani SR, Ortega V, Velagaleti GV et al. (2014). PKA/AMPK signaling in relation to adiponectin’s antiproliferative effect on multiple myeloma cells. Leukemia 28: 2080-2089.
  • Mohan V, Sinha RA, Pathak A, Rastogi L, Kumar P et al. (2012). Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Experimental Neurology 237: 477-488.
  • Muller H, Bracken AP, Vernell R, Moroni MC, Christians F et al. (2001). E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes and Development 15: 267-285.
  • Ohtani K, DeGregori J, Nevins JR (1995). Regulation of the cyclin E gene by transcription factor E2F1. Proceedings of the National Academy of Sciences of the United States of America 92: 12146-12150.
  • Olmos Y, Brosens JJ, Lam EW (2011). Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resistance Updates 14: 35-44.
  • Özeş AR, Pulliam N, Ertosun MG, Yılmaz Ö, Tang Jet al. (2018). Protein kinase A-mediated phosphorylation regulates STAT3 activation and oncogenic EZH2 activity. Oncogene 37: 3589- 3600.
  • Pediconi N, Guerrieri F, Vossio S, Bruno T, Belloni L et al. (2009). hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Molecular and Cellular Biology 29: 1989-1998.
  • Peeper DS, Keblusek P, Helin K, Toebes M, Van der Eb AJet al. (1995). Phosphorylation of a specific cdk site in E2F-1 affects its electrophoretic mobility and promotes pRB-binding in vitro. Oncogene 10: 39-48.
  • Pillai S, Kovacs M, Chellappan S (2010). Regulation of vascular endothelial growth factor receptors by Rb and E2F1: role of acetylation. Cancer Research 70: 4931-4940.
  • Qin XQ, Livingston DM, Kaelin Jr WG, Adams PD (1994). Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America 91: 10918-10922.
  • Schmitt JM, Stork PJ (2002). PKA phosphorylation of Src mediates cAMP’s inhibition of cell growth via Rap1. Molecular Cell 9: 85-94.
  • Shan B, Lee WH (1994). Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Molecular and Cellular Biology 14: 8166-8173.
  • Slansky JE, Li Y, Kaelin WG, Farnham PJ (1993). A protein synthesisdependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Molecular and Cellular Biology 13: 1610-1618.
  • Stanelle J, Stiewe T, Theseling CC, Peter M, Putzer BM (2002). Gene expression changes in response to E2F1 activation. Nucleic Acids Research 30: 1859-1867.
  • Stevens C, Smith L, La Thangue NB (2003). Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biology 5:401-409.
  • Takahashi Y, Rayman JB, Dynlacht BD (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes and Development 14: 804-816.
  • Tantini B, Manes A, Fiumana E, Pignatti C, Guarnieri C et al. (2005). Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Research in Cardiology 100: 131-138.
  • Wang S, Nath N, Minden A, Chellappan S (1999). Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. The EMBO Journal 18: 1559-1570.
  • Wu X, Levine AJ (1994). p53 and E2F-1 cooperate to mediate apoptosis. Proceedings of the National Academy of Sciences of the United States of America 91: 3602-3606.
  • Zhao J, Ramos R, Demma M (2013). CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 32: 3520-3530.
APA ERTOSUN M, DILMAÇ S, Hapil F, tanriover g, KOKSOY S, ozes o (2020). Regulation of E2F1 activity via PKA-mediated phosphorylations. , 215 - 229. 10.3906/biy-2003-9
Chicago ERTOSUN Mustafa Gokhan,DILMAÇ SAYRA,Hapil Fatma Zehra,tanriover gamze,KOKSOY SADI,ozes osman nidai Regulation of E2F1 activity via PKA-mediated phosphorylations. (2020): 215 - 229. 10.3906/biy-2003-9
MLA ERTOSUN Mustafa Gokhan,DILMAÇ SAYRA,Hapil Fatma Zehra,tanriover gamze,KOKSOY SADI,ozes osman nidai Regulation of E2F1 activity via PKA-mediated phosphorylations. , 2020, ss.215 - 229. 10.3906/biy-2003-9
AMA ERTOSUN M,DILMAÇ S,Hapil F,tanriover g,KOKSOY S,ozes o Regulation of E2F1 activity via PKA-mediated phosphorylations. . 2020; 215 - 229. 10.3906/biy-2003-9
Vancouver ERTOSUN M,DILMAÇ S,Hapil F,tanriover g,KOKSOY S,ozes o Regulation of E2F1 activity via PKA-mediated phosphorylations. . 2020; 215 - 229. 10.3906/biy-2003-9
IEEE ERTOSUN M,DILMAÇ S,Hapil F,tanriover g,KOKSOY S,ozes o "Regulation of E2F1 activity via PKA-mediated phosphorylations." , ss.215 - 229, 2020. 10.3906/biy-2003-9
ISNAD ERTOSUN, Mustafa Gokhan vd. "Regulation of E2F1 activity via PKA-mediated phosphorylations". (2020), 215-229. https://doi.org/10.3906/biy-2003-9
APA ERTOSUN M, DILMAÇ S, Hapil F, tanriover g, KOKSOY S, ozes o (2020). Regulation of E2F1 activity via PKA-mediated phosphorylations. Turkish Journal of Biology, 44(5), 215 - 229. 10.3906/biy-2003-9
Chicago ERTOSUN Mustafa Gokhan,DILMAÇ SAYRA,Hapil Fatma Zehra,tanriover gamze,KOKSOY SADI,ozes osman nidai Regulation of E2F1 activity via PKA-mediated phosphorylations. Turkish Journal of Biology 44, no.5 (2020): 215 - 229. 10.3906/biy-2003-9
MLA ERTOSUN Mustafa Gokhan,DILMAÇ SAYRA,Hapil Fatma Zehra,tanriover gamze,KOKSOY SADI,ozes osman nidai Regulation of E2F1 activity via PKA-mediated phosphorylations. Turkish Journal of Biology, vol.44, no.5, 2020, ss.215 - 229. 10.3906/biy-2003-9
AMA ERTOSUN M,DILMAÇ S,Hapil F,tanriover g,KOKSOY S,ozes o Regulation of E2F1 activity via PKA-mediated phosphorylations. Turkish Journal of Biology. 2020; 44(5): 215 - 229. 10.3906/biy-2003-9
Vancouver ERTOSUN M,DILMAÇ S,Hapil F,tanriover g,KOKSOY S,ozes o Regulation of E2F1 activity via PKA-mediated phosphorylations. Turkish Journal of Biology. 2020; 44(5): 215 - 229. 10.3906/biy-2003-9
IEEE ERTOSUN M,DILMAÇ S,Hapil F,tanriover g,KOKSOY S,ozes o "Regulation of E2F1 activity via PKA-mediated phosphorylations." Turkish Journal of Biology, 44, ss.215 - 229, 2020. 10.3906/biy-2003-9
ISNAD ERTOSUN, Mustafa Gokhan vd. "Regulation of E2F1 activity via PKA-mediated phosphorylations". Turkish Journal of Biology 44/5 (2020), 215-229. https://doi.org/10.3906/biy-2003-9