Yıl: 2021 Cilt: 7 Sayı: 2 Sayfa Aralığı: 143 - 151 Metin Dili: İngilizce DOI: 10.30855/gmbd.2021.02.07 İndeks Tarihi: 29-07-2022

Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite

Öz:
The cryogenic treatment, known as holding materials at sub-zero temperatures, is a method usedto improve the properties of metal and non-metallic materials in recent years. This method ismainly applied to tool steels used in mold making. In our country, the use of cryogenic processescontinues to be widespread by many private sector organizations, primarily in mold materials.The benefits of this process have been recognized in many sectors, from the defense industry tothe automotive industry. In this study, the macro hardness, micro hardness and microstructureproperties of Sleipner cold work tool steel, which was applied traditional heat treatment and deepcryogenic process for 24 hours, were examined and the changes in the mechanical properties andmicrostructure of the material were determined. However, by measuring the residual stress andresidual austenite amounts in the materials with the X-Ray Diffraction (XRD) Method, thedifference between the samples was determined. The macro hardness of the CHT and DCT-24samples was measured as 60.96 HRC and 61.46 HRC, respectively. Micro hardness values were also measured as 734.26 HV and 761.83 HV, respectively. Deep cryogenic treatment increasedmacro and microhardness by 0.5 HRC and 27.57 HV, respectively. The amount of residualaustenite decreased by 36% after deep cryogenic treatment. Axial and circumferential residualstress values also decreased by 48.84% and 36.52%, respectively. As a result, deep cryogenictreatment increased the hardness of Sleipner cold work tool steel, homogenized themicrostructure, reduced residual austenite and residual stress values and provided positiveimprovements.
Anahtar Kelime: Sleipner Residual Stress Retained Austenite Cyrogenic Treatment

Derin Kriyojenik İşlemin Kalıntı Gerilme ve Kalıntı Östenit Üzerindeki Etkisinin Araştırılması

Öz:
Sıfırın altındaki sıcaklıklarda malzemelerin bekletilmesi olarak bilinen kriyojenik işlem, son yıllarda metal ve metal olmayan malzemelerin özelliklerini iyileştirmek için uygulanan bir yöntemdir. Bu yöntem daha çok kalıp yapımında kullanılan takım çelikleri için uygulanmaktadır. Ülkemizde, birçok özel sektör kuruluşu tarafından öncelikle kalıp malzemeleri olmak üzere birçok üründe kriyojenik işlem kullanımı yaygınlaşmaya devam etmektedir. Savunma sanayiinden otomotiv sanayiine kadar birçok sektörde bu işlemin faydaları kabul görmüştür. Bu çalışmada, geleneksel ısıl işlem uygulanmış (CHT) ve 24 saat derin kriyojenik işlem uygulanmış (DCT-24) Sleipner soğuk iş takım çeliğinin makro sertlik, mikro sertlik ve mikroyapı özellikleri incelenerek, malzemenin mekanik özellikleri ve mikroyapısındaki değişimler tespit edilmiştir. Bununla birlikte, X-Işını Kırınımı (XRD) Yöntemi ile malzemelerdeki kalıntı gerilme ve kalıntı östenit miktarları ölçülerek, numuneler arasındaki fark belirlenmiştir. CHT ve DCT-24 numunelerinin makro sertliği sırasıyla 60,96 HRC ve 61,46 HRC olarak ölçülmüştür. Mikro sertlik değerleri de sırasıyla 734,26 HV ve 761,83 HV olarak ölçülmüştür. Derin kriyojenik işlem makro ve mikro sertliği sırasıyla 0,5 HRC ve 27,57 HV arttırmıştır. Kalıntı östenit miktarı derin kriyojenik işlemden sonra % 36 oranında düşmüştür. Eksenel ve çevresel kalıntı gerilme değerleri de sırasıyla % 48,84 ve % 36,52 oranında düşmüştür. Sonuç olarak derin kriyojenik işlem Sleipner soğuk iş takım çeliğinin sertliği arttırmış, mikroyapıyı homojenleştirmiş, kalıntı östenit ve kalıntı gerilme değerlerini düşürerek olumlu iyileşmeler sağlamıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M.A.S. Bin Abdul Rahim, M.B. Minhat, N.I.S. Hussein, M.S.B. Salleh, “A comprehensive review on cold work of AISI D2 tool steel,” Metallurgical Research and Technology, vol. 115, pp. 104-116, 2018. doi:https://dx.doi.org/10.1051/metal/2017048.
  • [2] O. Özbek and H. Saruhan, “The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 2762-2772, 2020.
  • [3] W.D. Jr. Callister and D.G. Rethwisch, Materials Science and Engineering, Eight Edition, Asia: John Wiley & Sons, 2015.
  • [4] N.A. Özbek and E. Saraç, “Effects of tempering heat treatment temperatures on mechanical properties of carbon steels,” Gazi Journal of Engineering Sciences, vol.7, no.1, pp. 17-25, 2021. doi:https://dx.doi.org/10.30855/gmbd.2021.01.03
  • [5] F. Kara, “Investigation of the effects of cryogenic treatment parameters on fatigue life and grindability of AISI 52100 steel,” Karabük University, Graduate School of Natural and Applied Sciences, Karabük, 2014.
  • [6] F. Kara, M. Karabatak, M. Ayyıldız and E. Nas, “Effect of machinability, microstructure andhardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 969-983,2020. doi:https://dx.doi.org/10.1016/j.jmrt.2019.11.037
  • [7] N.A. Özbek, A. Cicek, M. Gülesin, O. Özbek, “Application of deep cryogenic treatment to uncoated tungsten carbide inserts in the turning of AISI 304 stainless steel” Metallurgical and Materials Transactions A, vol. 47, no. 12, pp. 6270-6280, 2016.
  • [8] H. Zhang, X. Yan, Q. Hou and Z. Chen, “Effect of cyclic cryogenic treatment on wear resistance, impact toughness, and microstructure of 42CrMo steel and its optimization,” Advances in Materials Science and Engineering, vol. 2021, pp. 1-13, 2021. doi: https://dx.doi.org/10.1155/2021/8870282
  • [9] E. Demir and I. Toktas, “Effects of cryogenic treatment on residual stresses of AISI D2 tool steel,” Kovove Materialy, vol. 56, pp. 153-161, 2018. doi:https://dx.doi.org/10.4149/km20183153
  • [10] E. Nas and N. Altan Özbek, “Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools,” Surface Review and Letters, vol. 27, no. 05, pp.1-13,2020. doi:https://dx.doi.org/10.1142/S0218625X19501774
  • [11] F. Kara and A. Takmaz, “Optimization by the Taguchi method of effect on the surface roughness of cryogenic treatment applied to cutting tools,” Material Testing, vol. 61, no. 11, pp. 1101-1104,2019. doi:https://dx.doi.org/10.3139/120.111427.
  • [12] N. A. Özbek, “Investigation of the effects of cryogenic treatment applied on coated tungsten carbide tools on machinability of AISI H11 steel,” Düzce University Journal of Science and Technology, vol. 8, no. 2, pp. 1650-1660,2020. doi:https://dx.doi.org/10.29130/dubited.679129.
  • [13] N. A. Özbek, “Effects of cryogenic treatment types on the performance of coated tungsten tools in the turning of AISI H11 steel” Journal of Materials Research and Technology, vol. 9, no. 4, pp. 9442-9456, 2020. doi:https://dx.doi.org/10.1016/j.jmrt.2020.03.038
  • [14] X. G. Yan and D. Y. Li, “Effects of the sub–zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel,” Wear, vol. 302, no. 1-2, pp. 854-862, 2013. doi: https://dx.doi.org/10.1016/j.wear.2012.12.037.
  • [15] N. A. Özbek, O. Özbek, F. Kara, “Investigation of the Effects of Cryogenic Treatment on AISI H11 Steel” in IMASCON 2018, Kocaeli, Turkey, November 23-25, 2018, pp. 1945-1951.
  • [16] P. I. Patil and R. G. Tated, “Comparison of effects of cryogenic treatment on different types of steels: A review,” International Journal of Computer Applications, vol. 9, pp. 10-29, 2012.
  • [17] N.A. Özbek, A. Cicek, M. Gülesin, O. Özbek, “Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear,” International Journal of Machine Tools and Manufacture, vol. 86, pp. 34-43, 2014.
  • [18] S. Bensely, D. Venkatesh, G.M. Lal, A. Nagara, A. Rajadurai, K. Junik, “Effect of cryogenic treatment on distribution of residual stress in case carburized EN 353 steel” Materials Science and Engineering: A, vol. 479, no. 1-2, pp. 229-235, 2008. doi:https://dx.doi.org/10.1016/j.msea.2007.07.035
  • [19] F. J. De Silva, S. D. Franco, A. R. Machado, E. O. Ezugwu and A. M. Souza Jr, “Performance of cryogenically treated HSS tools” Wear, vol. 261, no. 5-6,pp.674-685, 2006. doi:https://dx.doi.org/10.1016/j.wear.2006.01.017
  • [20] V. Leskovsek and B. Podgornik, “Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel,” Materials Science and Engineering: A, vol. 531, pp. 119-129, 2012. doi:https://dx.doi.org/10.1016/j.msea.2011.10.044
  • [21] T. Vignesh Kumar, R. Thirumurugan and B. Viswanath, “Influence of cryogenic treatment on the metallurgy of ferrous alloys: A review,” Materials and Manufacturing Processes, vol. 32, no. 16, pp. 1789-1805, 2017. doi:https://dx.doi.org/10.1080/10426914.2017.131779
  • [22] D. Das, A. K. Dutta, V. Toppo and K. K. Ray, “The Effect of cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel,” Material and Manufacturing Processes, vol. 22, no. 4, pp. 474-480, 2007. doi:https://dx.doi.org/10.1080/10426910701235934
  • [22] H. S. Yang, J. Wang, B. Shen, H. H. Liu, S. J. Gao and S. J. Huang, “Effect of cryogenic treatment on the matrix structure and abrasion resistance of white cast iron subjected to destabilization treatment,” Wear, vol. 261, no. 10, pp. 1150-1154, 2006. doi:https://dx.doi.org/10.1016/j.wear.2006.03.021
  • [23] Z. Weng, X. Liu, K. Gu, J. Guo, C. Cui and J. Wang, “Modification of residual stress and microstructure in aluminium alloy by cryogenic treatment,” Materials Science and Technology, vol. 36, no. 14, pp. 1547-1555, 2020. doi:https:// dx.doi.org/10.1080/02670836.2020.1800182
  • [24] M. Bicek, F. Dumont, C. Courbon, F. Pusaveca, J. Rech and J. Kopac, “Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel,” Journal of Materials Processing Technology, vol. 212, no. 12, pp. 2609-2618, 2012. doi:https://dx.doi.org/10.1016/ j.jmatprotec.2012.07.022
  • [25] J. Yi, W.J. Xue, Z.P. Xie, W. Liu, L.X. Cheng, J. Chen, H. Cheng and Y.X. Gao, “Enhanced tough-ness and hardness at cryogenic temperatures of sil-icon carbide sintered by SPS,” Materials Science and Engineering: A, vol. 569, pp. 13-17, 2013. doi:https://dx.doi.org/10.1016/j.msea.2013.01.053
  • [26] A. Akhbarizadeh and S. Javadpour, “Investigat ing the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment,” Materials Letters, vol. 93, pp. 247-250, 2013. doi:https://dx.doi.org/10.1016/j.matlet.2012.11.081
APA KARA F, uygur i, ÖZBEK O, Altan Ozbek N (2021). Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. , 143 - 151. 10.30855/gmbd.2021.02.07
Chicago KARA Fuat,uygur ilyas,ÖZBEK Onur,Altan Ozbek Nursel Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. (2021): 143 - 151. 10.30855/gmbd.2021.02.07
MLA KARA Fuat,uygur ilyas,ÖZBEK Onur,Altan Ozbek Nursel Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. , 2021, ss.143 - 151. 10.30855/gmbd.2021.02.07
AMA KARA F,uygur i,ÖZBEK O,Altan Ozbek N Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. . 2021; 143 - 151. 10.30855/gmbd.2021.02.07
Vancouver KARA F,uygur i,ÖZBEK O,Altan Ozbek N Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. . 2021; 143 - 151. 10.30855/gmbd.2021.02.07
IEEE KARA F,uygur i,ÖZBEK O,Altan Ozbek N "Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite." , ss.143 - 151, 2021. 10.30855/gmbd.2021.02.07
ISNAD KARA, Fuat vd. "Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite". (2021), 143-151. https://doi.org/10.30855/gmbd.2021.02.07
APA KARA F, uygur i, ÖZBEK O, Altan Ozbek N (2021). Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi Mühendislik Bilimleri Dergisi, 7(2), 143 - 151. 10.30855/gmbd.2021.02.07
Chicago KARA Fuat,uygur ilyas,ÖZBEK Onur,Altan Ozbek Nursel Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi Mühendislik Bilimleri Dergisi 7, no.2 (2021): 143 - 151. 10.30855/gmbd.2021.02.07
MLA KARA Fuat,uygur ilyas,ÖZBEK Onur,Altan Ozbek Nursel Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi Mühendislik Bilimleri Dergisi, vol.7, no.2, 2021, ss.143 - 151. 10.30855/gmbd.2021.02.07
AMA KARA F,uygur i,ÖZBEK O,Altan Ozbek N Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi Mühendislik Bilimleri Dergisi. 2021; 7(2): 143 - 151. 10.30855/gmbd.2021.02.07
Vancouver KARA F,uygur i,ÖZBEK O,Altan Ozbek N Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite. Gazi Mühendislik Bilimleri Dergisi. 2021; 7(2): 143 - 151. 10.30855/gmbd.2021.02.07
IEEE KARA F,uygur i,ÖZBEK O,Altan Ozbek N "Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite." Gazi Mühendislik Bilimleri Dergisi, 7, ss.143 - 151, 2021. 10.30855/gmbd.2021.02.07
ISNAD KARA, Fuat vd. "Investigation of the Effect of Deep Cryogenic Process on Residual Stress and Residual Austenite". Gazi Mühendislik Bilimleri Dergisi 7/2 (2021), 143-151. https://doi.org/10.30855/gmbd.2021.02.07