Yıl: 2021 Cilt: 25 Sayı: 2 Sayfa Aralığı: 238 - 244 Metin Dili: İngilizce DOI: 10.19113/sdufenbed.808371 İndeks Tarihi: 29-07-2022

Relaxation of Conditions of Lyapunov Functions

Öz:
In this study, stability conditions are given for nonlinear time varyingsystems using the classical Lyapunov 2nd Method and its arguments. A novelapproach is utilized and so that uniform stability can also be proved by using anunclassical Lyapunov Function. In contrast with the studies in the literature,Lyapunov Function is allowed to be negative definite and increasing through thesystem. To construct a classical Lyapunov Function, we use a reverse timeapproach methodology for the intervals where the unclassical one is increasing. Sowe prove the stability using a new Lyapunov Function construction methodology.The main result shows that the existence of such a function guarantees the stabilityof the origin. Some numerical examples are also given to demonstrate theefficiency of the method we use.
Anahtar Kelime: Lyapunov 2nd Method Uniform Stability Stability Analysis Lyapunov Function Time-varying Systems Nonlinear Systems

Lyapunov Fonksiyonun Koşullarının Gevşetilmesi

Öz:
Bu çalışmada, klasik Lyapunov 2. Metodu ve bu metoda dair argümanlar kullanılarak, zamanla değişen yapıdaki Doğrusal Olmayan Sistemler için kararlı olma koşulları verilmektedir. Özgün bir yaklaşım kullanılmış ve böylece düzgün kararlılık, klasik olmayan bir Lyapunov Fonksiyonu kullanılarak da ayrıca ispatlanabilmiştir. Literatürdeki çalışmaların aksine, kullandığımız klasik olmayan Lyapunov Fonksiyonunun bazı aralıklar için sistem boyunca artan ve negatif tanımlı olmasına izin verilmiştir. Klasik Lyapunov Fonksiyonu’nu inşaa etmek için, klasik olmayan Lyapunov Fonksiyonu’nun artan olduğu aralıklarda ters zaman yaklaşımını kullanıyoruz. Böylece yeni bir Lyapunov Fonksiyonu inşa etme yaklaşımı kullanarak kararlığı ispatlamış oluyoruz. Ana sonuç böyle bir fonksiyonun varlığının, orjinin kararlılığını garantilediğini gösterir. Yaklaşımın efektif olduğunu göstermek için ayrıca bir takım nümerik örnekler de verilmiştir
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
1
  • [1] Khalil H. 2002. Nonlinear systems. Macmillan Publishing Company, New Jersey, 750p.
  • [2] Vidyasagar, M. 1993. Nonlinear Systems Analysis. SIAM series, Prentice Hall, New Jersey, 498p.
  • [3] Bayrak, A. 2017. Sliding Mode Based Self-Tuning PID Controller for Second Order Systems. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (3) , 866-872.
  • [4] Butz A. R. 1969. Higher order derivatives of Liapunov functions. IEEE Trans.Automatic Control, AC-14, 111-112.
  • [5] Ahmadi A. A. 2008. Non-monotonic Lyapunov Functions for Stability of Nonlinear and Switched Systems: Theory and Computation. Ms Thesis, MIT, USA.
  • [6] Meigoli V., Nikravesh S. K. Y. 2009. A new theorem on higher order derivatives of Lyapunov functions. ISA Transactions, 48, 173- 179.
  • [7] Meigoli V., Nikravesh S. K. Y. 2012. Stability analysis of nonlinear systems using higher order derivatives of Lyapunov function candidates. Systems and Control Letters, 61, 973-979.
  • [8] Lee, D. H., Park, J. B., Joo, Y. H. 2011. Fundamental connections among the stability conditions using higher-order time derivatives of Lyapunov functions for the case of linear time-invariant systems. Systems and Control Letters, 60(9), 778-785.
  • [9] Lacerda M .J., Seiler P. 2017. Stability of uncertain systems using Lyapunov func. with non-monotonic terms. Automatica, 82, 187-193.
  • [10] Tanaka K., Hori T., Wang H. O. 2001. A Fuzzy Lyapunov Approach to Fuzzy Control System Design. Proc. of the American Control Conference, Arlington VA, USA, 4790-4795.
  • [11] Tanaka K., Hori T., Wang H.O. 2003. A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems. IEEE Trans. On Fuzzy Systems, 11(4), 582-589.
  • [12] Rhee, B. J., Won, S. 2006. A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design. Fuzzy Sets and Systems, 157(9), 1211-1228.
  • [13] Gao, H., Liu, X., Lam, J. 2009. Stability Analysis and Stabilization for DiscreteTime Fuzzy Systems with Time-Varying Delay. IEEE Trans. on Systems Man and Cybernetics Part BCybernetics, 39(2), 306-317.
  • [14] Zhang H., Xie X. 2011. Relaxed Stability Conditions for Continuous-Time T-S FuzzyControl Systems Via Augmented Multi-Indexed Matrix Approach. IEEE Transactions on Fuzzy Systems, 19(3) 478-492.
  • [15] Ying, J. C., Motoyasu, T., Kohei, I., Hiroshi, O., Kazuo, T., Thierry, M., Alexandre, K., Hua, O. W. 2014. A nonmonotonically decreasing relaxation approach of Lyapunov functions to guaranteed cost control for discrete fuzzy systems. IET Control Theory and Applications, 8(16), 1716- 1722
  • [16] Ahmadi, A. A. Parrilo, P .A. 2008. Non-monotonic Lyapunov Functions for Stability of Discrete Time Nonlinear and Switched Systems. Proc. of the 47th IEEE Conference on Decision and Control, 2008, Cancun, Mexico, 614-621.
  • [17] Jungers, R., Ahmadi, A. A., Parrilo, A. P., Roozbehani, M. 2017. A Characterization of Lyapunov Inequalities for Stability of Switched Systems. IEEE Trans. on Aut. Control, 62(6) 3062-3067.
  • [18] Liberzon, D., Ying, C., Zharnitsky, V. 2014. On almost Lyapunov functions. 53rd IEEE Conference on Decision and Control. Los Angeles, California, USA, 3083-3088.
  • [19] Liu, S., Liberzon, D., Zharnitsky, V. 2016. On almost Lyapunov functions for Nonvanishing Vector Fields. IEEE 55th Conference on Decision and Control, Las Vegas, USA, 5557-5562.
  • [20] Defoort, M., Djemai, M., Trenn S. 2014. Nondecreasing Lyapunov Functions. 21st Int. Symp. On Math. Theory of Networks and Systems, Groningen, Netherlands, 1038-1043.
  • [21] Chen, G., Yang, Y. 2016. New stability conditions for a class of linear time-varying systems. Automatica (71), 342-347.
  • [22] Michel, A. N., Hou, L., Liu, D. 2015. Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions. Birkhauser Basel.
  • [23] Wang, Z., Hu, G. 2017. Economic MPC of nonlinear systems with nonmonotonic Lyapunov functions and its application to HVAC control. Int. J. of Robust and Nonlinear Control 28, 2513-2527.
  • [24] Papachristodoulou, A., Prajna, S. 2002. On the Construction of Lyapunov Functions using the Sum of Squares Decomposition. IEEE 41st Conference on Decision and Control, ThP10-1, Las Vegas, USA.
  • [25] Zhang, H., Zhongkui, L., Zhihua, Q., Lewis, F. 2015. On constructing Lyapunov functions for multi-agent systems. Automatica (58), 39-42.
APA Şahan G (2021). Relaxation of Conditions of Lyapunov Functions. , 238 - 244. 10.19113/sdufenbed.808371
Chicago Şahan Gökhan Relaxation of Conditions of Lyapunov Functions. (2021): 238 - 244. 10.19113/sdufenbed.808371
MLA Şahan Gökhan Relaxation of Conditions of Lyapunov Functions. , 2021, ss.238 - 244. 10.19113/sdufenbed.808371
AMA Şahan G Relaxation of Conditions of Lyapunov Functions. . 2021; 238 - 244. 10.19113/sdufenbed.808371
Vancouver Şahan G Relaxation of Conditions of Lyapunov Functions. . 2021; 238 - 244. 10.19113/sdufenbed.808371
IEEE Şahan G "Relaxation of Conditions of Lyapunov Functions." , ss.238 - 244, 2021. 10.19113/sdufenbed.808371
ISNAD Şahan, Gökhan. "Relaxation of Conditions of Lyapunov Functions". (2021), 238-244. https://doi.org/10.19113/sdufenbed.808371
APA Şahan G (2021). Relaxation of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 238 - 244. 10.19113/sdufenbed.808371
Chicago Şahan Gökhan Relaxation of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no.2 (2021): 238 - 244. 10.19113/sdufenbed.808371
MLA Şahan Gökhan Relaxation of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.25, no.2, 2021, ss.238 - 244. 10.19113/sdufenbed.808371
AMA Şahan G Relaxation of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(2): 238 - 244. 10.19113/sdufenbed.808371
Vancouver Şahan G Relaxation of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(2): 238 - 244. 10.19113/sdufenbed.808371
IEEE Şahan G "Relaxation of Conditions of Lyapunov Functions." Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25, ss.238 - 244, 2021. 10.19113/sdufenbed.808371
ISNAD Şahan, Gökhan. "Relaxation of Conditions of Lyapunov Functions". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (2021), 238-244. https://doi.org/10.19113/sdufenbed.808371