Yıl: 2021 Cilt: 8 Sayı: 2 Sayfa Aralığı: 200 - 209 Metin Dili: İngilizce DOI: 10.30897/ijegeo.794723 İndeks Tarihi: 02-10-2021

Bed load transport estimations in Goodwin creek using neural network methods

Öz:
Equations used for calculating bedload transport rates are generally developed based on the assumption of steady flow conditions.This implies that the relationship between bedload transport, discharge, flow depth, and shear stress is single-valued. One of thereasons for adopting such an approach is that almost all the pertinent laboratory data on bedload transport have been obtained fromexperiments performed under steady flow conditions. Similarly, the scarcity of accurate bed load field data obtained during thepassage of floods is attributed to the difficulties, which at times can become life-threatening, encountered under such conditions.Provision of data under challenging conditions may lead to the inability to provide data in some cases and interruption in datacontinuity. It is difficult to make predictions using classical statistical science in discontinuous or lack of data situations. Artificialneural networks (ANN) are useful in predicting when the data is insufficient. In this study, two frequently used ANN applications,radial basis functions, and generalized regression neural network are employed to estimate the bed load data. It was seen that theANN estimations are more satisfactory compared to those of the conventional statistical methods results. It was shown that ANNestimations for gravel bedload data are more successful than the sand load data.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abhishek, K., Kumar, A., Ranjan, R., Kumar, S. (2012). A rainfall prediction model using artificial neural network. In Proceedings - 2012 IEEE Control and System Graduate Research Colloquium, ICSGRC 2012. DOI: 10.1109/ICSGRC.2012.6287140.
  • Abrahart, R. J., White, S. M. (2001). Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), 19–24. DOI: 10.1016/S1464-1909(01)85008-5.
  • Aldabash, M., Balık Şanlı, F. (2016). Analysis of Multi Temporal Satellite Imagery for Total Suspended Sediments in a Wave-Active Coastal Area-Gaza Strip Coastal Water, Palestine. International Journal of Environment and Geoinformatics, 3(1), 1-11 . DOI: 10.30897/ijegeo.304414.
  • Algan O, Gazioğlu C, Çağatay N, Yücel ZY, Gönençgil B. (1999). Sediment and water influxes into the Black Sea by Anatolian rivers. Zeitschrift für Geomorphologie 43: 61–79.
  • Algan, O., Gökasan, E., Gazioglu, C., Yücel, ZYY., Alpar, b., Güneysu, C., Kirci, E., Demirel, S., Sari,
  • E., Ongan, D. (2002). A high-resolution seismic study in Sakarya Delta and submarine Canyon, southern Black Sea shelf, Continent. Shelf Res.,22(10), 1511-1527.
  • Asheghi, R., Hosseini, S. A. (2020). Prediction of bed load sediments using different artificial neural network models. Frontiers of Structural and Civil Engineering, 14(2), 374–386. DOI: 10.1007/s11709- 019-0600-0.
  • Ashley, T., McElroy, B., Buscombe, D., Grams, P. E., Kaplinski, M. (2020). Estimating Bedload From Suspended Load and Water Discharge in Sand Bed Rivers. Water Resources Research, 56. DOI: 10.1029/2019WR025883.
  • Bayazit, M. (1996). Mechanism of Sediment Transport. In Post-Graduate Course in Sediment Transport Technology (pp. 5–19).
  • Bayazit, M. (2000). Sediment Transport Technology. Bed Metarial Transport.
  • Birikundavyi, S., Labib, R., T. Trung, H., Rousselle, J. (2002). Performance of Neural Networks in Daily Streamflow Forecasting. In Journal of Hydrologic Engineering - J HYDROL ENG (Vol. 7). DOI: 10.1061/(ASCE)1084-0699(2002)7:5(392).
  • Broomhead, D. S., Lowe, D. G. (1988). Multivariable Functional Interpolation and Adaptive Networks. Complex Systems, 2, 321–355.
  • Buyukyildiz, M., Kumcu, S. Y. (2017). An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models. Water Resources Management, 31(4), 1343– 1359. DOI: 10.1007/s11269-017-1581-1.
  • Campolo, M., Soldati, A., Andreussi, P. (2003). Artificial neural network approach to flood forecasting in the River Arno. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques - HYDROLOG SCI J, 48, 381–398. DOI: 10.1623/hysj.48.3.381.45286.
  • Cigizoglu, H. K. (2003a). Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics, 14(4), 417–427. DOI: 10.1002/env.596.
  • Cigizoglu, H. K. (2003c). Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources, 27(2), 185–195. DOI: 10.1016/j.advwatres.2003.10.003.
  • Cigizoglu, H.K., Kisi, O. (2005). Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrology, 36(1), 49–64. DOI: 004/165/004165223.
  • Cigizoglu, H Kerem, Alp, M. (2004). Rainfall-Runoff Modelling Using Three Neural Network Methods BT - Artificial Intelligence and Soft Computing - ICAISC 2004 (L. Rutkowski, J. H. Siekmann, R. Tadeusiewicz, & L. A. Zadeh (eds.); pp. 166–171). Springer Berlin Heidelberg..
  • Cigizoglu, H. K. (2003b). Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal, 48(3), 349–362. DOI: 10.1623/hysj.48.3.349.45288.
  • Dawson, C. W., Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80–108. DOI: 10.1191/030913301674775671.
  • Diplas, P., Kuhnle, R., Gray, J., Glysson, D., Edwards, T. (2008). Sediment Transport Measurements (pp. 307–353). DOI: 10.1061/9780784408148.ch05.
  • Duncan, A., Chen, A., Keedwell, E., Djordjević, S., Savic, D. (2012). Urban flood prediction in real-time from weather radar and rainfall data using artificial neural networks. In IAHS-AISH Publication (Vol. 351).
  • Elshorbagy, A., Simonovic, S. (2002). Estimation of missing streamflow data using principles of chaos theory. In Journal of Hydrology - J HYDROL (Vol. 255). DOI: 10.1016/S0022-1694(01)00513-3.
  • Fernando, D. A. K., Jayawardena, A. (1998). Runoff forecasting using RBF networks with OLS algorithm. In Journal of Hydrologic Engineering - J HYDROL ENG (Vol. 3). DOI: 10.1061/(ASCE)1084- 0699(1998)3:3(203).
  • Feyzolahpour, M., Rajabi, M., Roostaei, S. (2012). Estimating suspended sediment concentration using neural differential evolution (NDE), multi layer perceptron (MLP) and radial basis function (RBF) models. International Journal of the Physical Sciences, 7. DOI: 10.5897/IJPS12.269.
  • Freiwan, M., Cigizoglu, H. (2005). Prediction of total monthly rainfall in Jordan using feed forward backpropagation method. In Fresenius Environmental Bulletin (Vol. 14).
  • Gajbhiye, S., Singh, V., Kisi, O., Khosrowshahi, V., Meshram, C. (2020). Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction. Water Resources Management, 34. DOI: 10.1007/s11269- 020-02672-8.
  • Gomez, B. (2006). The Potential Rate of Bed-Load Transport. Proceedings of National Academy of Sciences, 103.
  • Hsu, K., Vijai Gupta, H., Sorooshian, S. (1995). Artificial Neural Network Modeling of the RainfallRunoff Process. In Water Resources Research - WATER RESOUR RES (Vol. 31). DOI: 10.1029/95WR01955.
  • Rahman, I. I. A., Alias, N. M. A., (2011). Rainfall forecasting using an artificial neural network model to prevent flash floods. 8th International Conference on High-Capacity Optical Networks and Emerging Technologies, 323–328. DOI: 10.1109/HONET.2011.6149841.
  • Kabari, L. (2020). Rain–Induced Flood Prediction for Niger Delta Sub-Region of Nigeria Using Neural Networks. European Journal of Engineering Research and Science, 5, 1124–1130. DOI: 10.24018/ejers.2020.5.9.2114.
  • Khalil, M., Panu, U., Lennox, W. C. (2001). Groups and neural networks based streamflow data infilling procedures. In Journal of Hydrology. 241. DOI: 10.1016/S0022-1694(00)00332-2.
  • Kironoto, B., Yulistiyanto, B. (2016). The Simplified of Suspended Sediment Measurement Method for Predicting Suspended Sediment Load as a Basic of Reservoir Capacity Design as Renewable Energy Resource. International Journal of Renewable Energy Research, 6, 315–322.
  • Kuhnle, R. A. (1992). Fractional transport rates of bed load on Goodwin Creek. In Dynamics of Gravel Bed Rivers.
  • Kuhnle, R. A., Wren, D. G., Langendoen, E. J. (2014). Predicting bed load transport of sand and gravel on Goodwin Creek. Journal of Hydro-Environment Research, 8(2), 153–163. DOI: 10.1016/j.jher.2013.11.005.
  • Kushwaha, D. (2017). Modeling suspended sediment concentration using multilayer feedforward artificial neural network at the outlet of the watershed. International Journal Of Agricultural Engineering, 10, 302–313. DOI: 10.15740/HAS/IJAE/10.2/302- 313.
  • Kushwaha, D. (2018). Modeling suspended sediment concentration using multi-layer feedforward artificial neural network at the outlet of the watershed. 10. DOI: 10.15740/HAS/IJAE/10.
  • Malik, A., Kumar, A., Piri, J. (2017). Daily suspended sediment concentration simulation using hydrological data of Pranhita River Basin, India. Computers and Electronics in Agriculture, 138, 20–28. DOI: 10.1016/j.compag.2017.04.005.
  • Menegbo, E. (2019). Locational Analysis of Surface Water Quality, Sediment and Dredge Spoil At Nembe, Bayelsa State, Nigeria, International Journal of Environment and Geoinformatics, 6(1), 15-21. DOI: 10.30897/ijegeo.464593.
  • Menteş, E., Kaya, Ş., Tanık, A., Gazı̇oğlu, C. (2019). Calculation of Flood Risk Index for Yesilirmak Basin-Turkey. International Journal of Environment and Geoinformatics, 6(3), 288-299.DOI: 10.30897/ijegeo.661533.
  • Minns, A. W., Hall, M. J. (1996). Modélisation pluiedébit par des réseaux neuroneaux artificiels. Hydrological Sciences Journal, 41(3), 399–417. DOI: 10.1080/02626669609491511.
  • Morris, G. L., Fan, J. (1998). Reservoir Sedimentation Handbook. McGraw-Hill Book Co, 7(11), 956–963. DOI: 10.1017/CBO9781107415324.004.
  • Nagy, H. M., Watanabe, K., Hirano, M. (2002). Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model. Journal of Hydraulic Engineering, 128. DOI: 10.1061/(ASCE)0733-9429(2002)128:6(588).
  • Pham, B., Le, L., Le, T.-T., Bui, K.-T., Le, V., Ly, H.-B., Prakash, I. (2020). Development of advanced artificial intelligence models for daily rainfall prediction. Atmospheric Research, 237. DOI:10.1016/j.atmosres.2020.104845.
  • Poggio, T., Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9), 1481–1497. DOI: 10.1109/5.58326.
  • Safari, M. J. S., Aksoy, H., Mohammadi, M. (2013). Application of ANN for the analysis of sediment incipient deposition in rigid boundary channels. DOI: 10.13140/2.1.5053.7764.
  • Samantaray, S., Tripathy, O., Sahoo, A., Ghose, D. (2020). Rainfall Forecasting Through ANN and SVM in Bolangir Watershed, India (pp. 767–774). DOI: 10.1007/978-981-13-9282-5_74.
  • Schäfer, S., Schalagenhauser, M., Rutschmann, P. (2019). Optical Measurement Method For Quantifying Sediment Transport In Physical Experiments. DOI: 10.3850/38WC092019-0409.
  • Sezin, T. A., Johnson, P. A. (1999). Rainfall-Runoff Modeling Using Artificial Neural Networks. Journal of Hydrologic Engineering, 4(3), 232–239. DOI: 10.1061/(ASCE)1084-0699(1999)4:3(232).
  • Shen, H. W. (1971). Chap 11. Wash Load and Bed Load. In River Mechanics Vol I.
  • Silverman, D., Dracup, J. A. (2000). Artificial Neural Networks and Long-Range Precipitation Prediction in California. Journal of Applied Meteorology - 39. DOI: 10.1175/1520-0450(2000)039.
  • Sokouti, R. (2013). Modeling sediment yield using artificial neural network and multiple linear regression methods. International Journal of Biosciences, 3, 116–122.
  • Specht, D. (1991). A General Regression Neural Network. In IEEE Transactions on Neural Networks (Vol. 2).
  • Taurino, A., Dello Monaco, D., Capone, S., Epifani, M., Rella, R., Siciliano, P., Ferrara, L., Maglione, G., Basso, A., & Balzarano, D. (2003). Analysis of dry salami by means of an electronic nose and correlation with microbiological methods. In Sensors and Actuators B-chemical, 95. DOI: 10.1016/S0925- 4005(03)00421-0.
  • Tayfur, G., Guldal, V. (2006). Artificial neural networks for estimating daily total suspended sediment in natural streams. Nordic Hydrology, 37, 69–79. https://doi.org/10.2166/nh.2005.031.
  • Tsoukalas, L. H., Uhrig, R. E. (1996). Fuzzy and Neural Approaches in Engineering (1st ed.). John Wiley & Sons, Inc.
  • Uzor-totty, A., Oyegun, C. (2020). Spatio-Temporal Dynamics of Sediment yield across the Imo River Basin South- East Nigeria, International Journal of Environment and Geoinformatics, 7(2), 184-190. DOI: 10.30897/ijegeo.645611.
  • Zhu, Y.-M., Lu, X. X., Zhou, Y. (2007). Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology, 84, 111–125. DOI: 10.1016/j.geomorph.2006.07.010.
APA Aksel M, Dikici M, cokgor s (2021). Bed load transport estimations in Goodwin creek using neural network methods. , 200 - 209. 10.30897/ijegeo.794723
Chicago Aksel Murat,Dikici Mehmet,cokgor sevket Bed load transport estimations in Goodwin creek using neural network methods. (2021): 200 - 209. 10.30897/ijegeo.794723
MLA Aksel Murat,Dikici Mehmet,cokgor sevket Bed load transport estimations in Goodwin creek using neural network methods. , 2021, ss.200 - 209. 10.30897/ijegeo.794723
AMA Aksel M,Dikici M,cokgor s Bed load transport estimations in Goodwin creek using neural network methods. . 2021; 200 - 209. 10.30897/ijegeo.794723
Vancouver Aksel M,Dikici M,cokgor s Bed load transport estimations in Goodwin creek using neural network methods. . 2021; 200 - 209. 10.30897/ijegeo.794723
IEEE Aksel M,Dikici M,cokgor s "Bed load transport estimations in Goodwin creek using neural network methods." , ss.200 - 209, 2021. 10.30897/ijegeo.794723
ISNAD Aksel, Murat vd. "Bed load transport estimations in Goodwin creek using neural network methods". (2021), 200-209. https://doi.org/10.30897/ijegeo.794723
APA Aksel M, Dikici M, cokgor s (2021). Bed load transport estimations in Goodwin creek using neural network methods. International Journal of Environment and Geoinformatics, 8(2), 200 - 209. 10.30897/ijegeo.794723
Chicago Aksel Murat,Dikici Mehmet,cokgor sevket Bed load transport estimations in Goodwin creek using neural network methods. International Journal of Environment and Geoinformatics 8, no.2 (2021): 200 - 209. 10.30897/ijegeo.794723
MLA Aksel Murat,Dikici Mehmet,cokgor sevket Bed load transport estimations in Goodwin creek using neural network methods. International Journal of Environment and Geoinformatics, vol.8, no.2, 2021, ss.200 - 209. 10.30897/ijegeo.794723
AMA Aksel M,Dikici M,cokgor s Bed load transport estimations in Goodwin creek using neural network methods. International Journal of Environment and Geoinformatics. 2021; 8(2): 200 - 209. 10.30897/ijegeo.794723
Vancouver Aksel M,Dikici M,cokgor s Bed load transport estimations in Goodwin creek using neural network methods. International Journal of Environment and Geoinformatics. 2021; 8(2): 200 - 209. 10.30897/ijegeo.794723
IEEE Aksel M,Dikici M,cokgor s "Bed load transport estimations in Goodwin creek using neural network methods." International Journal of Environment and Geoinformatics, 8, ss.200 - 209, 2021. 10.30897/ijegeo.794723
ISNAD Aksel, Murat vd. "Bed load transport estimations in Goodwin creek using neural network methods". International Journal of Environment and Geoinformatics 8/2 (2021), 200-209. https://doi.org/10.30897/ijegeo.794723