Yıl: 2020 Cilt: 9 Sayı: 2 Sayfa Aralığı: 1 - 8 Metin Dili: İngilizce DOI: 10.46810/tdfd.822928 İndeks Tarihi: 29-07-2022

Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures

Öz:
There is an increasing demand in the synthesis of shape and size-controlled gold nanostructures (Au NSs) with greener methods. Therefore, we aimed to synthesize differently shaped and sized Au NSs using a greener technique under ambient conditions. In this study, we utilized pollen extracts of Corylus avellana, Juniperus oxycedrus and Pinus nigra species (collected from Kastamonu region of Turkey) for the synthesis. The extraction was performed in water in order to recover water soluble content from the pollen grains. The extracts were used to stabilize, and shape/size direct the HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer synthesized Au NSs. UV-vis, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) characterizations proved synthesis of spherical, anisotropic and large Au NSs with this benign approach. The obtained Au NSs were possible to separate small and large Au NSs through centrifugation. Chemistry of pollen extracts played key role on morphology and stability of the Au NSs. The findings, for the first time, is revealing the synthesis of large Au nanorod bundles (>300 nm) along with hexagonal and spherical Au NSs under ambient conditions using pollen grain extracts, whose maturation took 24h.
Anahtar Kelime:

Polen Özütü Aracılı Altın Nanoparçacıkların Sentezi ve Karakterizasyonu

Öz:
Altın nanoyapıların (AuNYların) morfoloji ve boyut kontrollü sentezlerinin yeşil kimya ile sentezine ihtiyaç giderek artmaktadır. O nedenle biz bu çalışma da AuNYlarının boyut ve morfoloji kontrollerinin oda şartlarında sentezini çalıştık. Kastamonu bölgesinden toplanan Corylus avellana, Juniperus oxycedrus ve Pinus nigra türlerine ait polen özütlerini kullanarak sentezler gerçekleştirildi. Polen tanelerinden özütleme saf su içerisinde gerçekleştirilerek su da çözünen bileşenlerin izolasyonu hedeflendi. Özütler, HEPES (4-(2-hidroksimetil)-1-piperazinetan sülfonik asit) tamponu aracılığıyla sentezlenmiş AuNYların kararlılığı ve şekil/boyut yönlendirilmesinde rol oynamıştır. UV-Vis, toz X-ışınları krınım tekniği ve taramalı elektron mikroskobu çalışmaları sentezlenen AuNYların sferik, anizotropik ve büyük yapı morfolojilerine sahip olduğunu göstermiştir. AuNYlar santrifüj kullanılarak boyutlarına göre ayrılmışlardır. Polen kimyasının sentezlenen AuNYların kararlılığı ve morfolojilerinde anahtar rol oynadıklarını göstermiştir. Araştırmalarımıza göre bu çalışma ile hekzagonal ve sferik AuNYlara ek olarak >300 nm nanorod demetlerin polen tane ekstraksiyonları ile oda sıcaklığında sentezi ilk defa gerçekleştirilmiştir. Sentezlenen AuNYların morfolojik kararlılıkları 24 saat içerisinde tamamlanmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] O. V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, The greener synthesis of nanoparticles, Trends Biotechnol. 31 (2013) 240– 248. https://doi.org/10.1016/j.tibtech.2013.01.003.
  • [2] P. Vijaya Kumar, S. Mary Jelastin Kala, K.S. Prakash, Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies, Mater. Lett. 236 (2019) 19–22. https://doi.org/10.1016/j.matlet.2018.10.025.
  • [3] V. V. Makarov, A.J. Love, O. V. Sinitsyna, S.S. Makarova, I. V. Yaminsky, M.E. Taliansky, N.O. Kalinina, “Green” nanotechnologies: Synthesis of metal nanoparticles using plants, Acta Naturae. 6 (2014) 35–44. https://doi.org/10.1039/c1gc15386b.
  • [4] M. Jamzad, M. Kamari Bidkorpeh, Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity, J. Nanostructure Chem. 10 (2020) 193–201. https://doi.org/10.1007/s40097- 020-00341-1.
  • [5] A.A. Jenifer, B. Malaikozhundan, S. Vijayakumar, M. Anjugam, A. Iswarya, B. Vaseeharan, Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals, J. Clust. Sci. 31 (2020) 989–1002. https://doi.org/10.1007/s10876-019-01704-7.
  • [6] C. Engelbrekt, K.H. Sørensen, J. Zhang, A.C. Welinder, P.S. Jensen, J. Ulstrup, Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry, J. Mater. Chem. 19 (2009) 7839. https://doi.org/10.1039/b911111e.
  • [7] N.N. Dhanasekar, G.R. Rahul, K.B. Narayanan, G. Raman, N. Sakthivel, Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp, J. Microbiol. Biotechnol. 25 (2015) 1129–1135. https://doi.org/10.4014/jmb.1410.10036.
  • [8] M. Jha, N.G. Shimpi, Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell : In vitro cytotoxicity, J. Genet. Eng. Biotechnol. 16 (2018) 115–124. https://doi.org/10.1016/j.jgeb.2017.12.001.
  • [9] I. Chung, A.A. Rahuman, S. Marimuthu, A.V. Kirthi, K. Anbarasan, P. Padmini, G. Rajakumar, Green synthesis of copper nanoparticles using eclipta prostrata leaves extract and their antioxidant and cytotoxic activities, Exp. Ther. Med. 14 (2017) 18–24. https://doi.org/10.3892/etm.2017.4466.
  • [10] J.Y. Song, E.Y. Kwon, B.S. Kim, Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract, Bioprocess Biosyst. Eng. 33 (2010) 159–164. https://doi.org/10.1007/s00449- 009-0373-2.
  • [11] Y. Xiaohui, S. Xiuqin, W. Yu, W. Wei, S. Yuhan, H. Lixue, Preparation of Spinous ZrO2 Microspheres with Tunable Shell and Chamber Structure by Controlling Pollen as a Nanoparticles Reactor, J. Nanosci. Nanotechnol. 11 (2011) 10369–10373. https://doi.org/10.1166/jnn.2011.5020.
  • [12] S. Hajebi, M. Homayouni, T. Mahboobeh, N. Moghaddam, F. Shahraki, Rapeseed flower pollen bio ‑ green synthesized silver nanoparticles : a promising antioxidant , anticancer and antiangiogenic compound, JBIC J. Biol. Inorg. Chem. 24 (2019) 395–404. https://doi.org/10.1007/s00775-019-01655-4.
  • [13] H. Banu, N. Renuka, S.M. Faheem, R. Ismail, V. Singh, Z. Saadatmand, S.S. Khan, K. Narayanan, A. Raheem, K. Premkumar, G. Vasanthakumar, Gold and Silver Nanoparticles Biomimetically Synthesized Using Date Palm Pollen ExtractInduce Apoptosis and Regulate p53 and Bcl-2 Expression in Human Breast Adenocarcinoma Cells, Biol. Trace Elem. Res. 186 (2018) 122–134. https://doi.org/10.1007/s12011-018-1287-0.
  • [14] J.P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, J. Phys. Chem. B. 108 (2004) 16864–16869. https://doi.org/10.1021/jp047134.
  • [15] B.G. Pummer, H. Bauer, J. Bernardi, B. Chazallon, S. Facq, B. Lendl, K. Whitmore, H. Grothe, Chemistry and morphology of dried-up pollen suspension residues, J. Raman Spectrosc. 44 (2013) 1654–1658. https://doi.org/10.1002/jrs.4395.
  • [16] Z.F. Feng, X.F. Chen, D.L. Di, Online extraction and isolation of highly polar chemical constituents from Brassica napus L. pollen by high shear technique coupled with high-performance countercurrent chromatography, J. Sep. Sci. 35 (2012) 625–632. https://doi.org/10.1002/jssc.201100992.
  • [17] N.M. Pinar, K. Gu, A. Yildiz, M. Smith, A 2-year aeropalynological survey of allergenic pollen in the atmosphere of Kastamonu , Turkey, Aerobiologia (Bologna). 28 (2012) 355–366. https://doi.org/10.1007/s10453-011-9240-0.
  • [18] Y. Türkmen, T. Çeter, N.M. Pinar, Analysis of airborne pollen of Gümüşhane province in northeastern Turkey and its relationship with meteorological parameters, Turk. J. Botany. 42 (2018) 687–700. https://doi.org/10.3906/bot-1712- 39.
  • [19] M. Mujtaba, M. Kaya, T. Ceter, An investigation of pollen grain thermal diversity on species level, Commun. Fac. Sci. Univ. Ankara Ser. C Biol. 27 (2018) 170–176. https://doi.org/10.1501/commuc.
  • [20] S. Seifert, V. Merk, J. Kneipp, Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods, J. Biophotonics. 9 (2016) 181–189. https://doi.org/10.1002/jbio.201500176.
  • [21] A. Acar, N.M. Pınar, F. Şafak, S. Silici, Analysis of Airborne Pollen Grains in Kayseri , Turkey, Karaelmas Fen ve Mühendislik Derg. 5 (2015) 79– 88.
  • [22] B. Zimmermann, A. Kohler, Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions, PLoS One. 9 (2014). https://doi.org/10.1371/journal.pone.0095417.
  • [23] J. Deng, W. Cheng, G. Yang, A novel antioxidant activity index (AAU) for natural products using the DPPH assay, Food Chem. 125 (2011) 1430–1435. https://doi.org/10.1016/j.foodchem.2010.10.031.
  • [24] T. Hofmann, E. Visi-rajczi, L. Albert, Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays, Ind. Crop. Prod. 145 (2020) 111935. https://doi.org/10.1016/j.indcrop.2019.111935.
  • [25] S. Castiglioni, P. Astolfi, C. Conti, E. Monaci, M. Stefano, P. Carloni, Morphological, physicochemical and FTIR spectroscopic properties of bee pollen loads from different botanical origin, Molecules. 24 (2019). https://doi.org/10.3390/molecules24213974.
  • [26] J. Depciuch, I. Kasprzyk, E. Drzymała, M. Parlinska-Wojtan, Identification of birch pollen species using FTIR spectroscopy, Aerobiologia (Bologna). 34 (2018) 525–538. https://doi.org/10.1007/s10453-018-9528-4.
  • [27] O. Anjos, A.J.A. Santos, T. Dias, L.M. Estevinho, Application of FTIR-ATR spectroscopy on the bee pollen characterization, J. Apic. Res. 56 (2017) 210–218. https://doi.org/10.1080/00218839.2017.1289657.
  • [28] R. Lahlali, Y. Jiang, S. Kumar, C. Karunakaran, X. Liu, F. Borondics, E. Hallin, R. Bueckert, ATRFTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance, Front. Plant Sci. 5 (2014) 1–10. https://doi.org/10.3389/fpls.2014.00747.
  • [29] C.S. Pappas, P.A. Tarantilis, P.C. Harizanis, M.G. Polissiou, New method for pollen identification by FT-IR spectroscopy, Appl. Spectrosc. 57 (2003) 23–27. https://doi.org/10.1366/000370203321165160.
  • [30] J.D.I.K.O. Sadik, FTIR analysis of molecular composition changes in hazel pollen from unpolluted and urbanized areas, Aerobiologia (Bologna). 33 (2017) 1–12. https://doi.org/10.1007/s10453-016-9445-3.
  • [31] M. Kędzierska-Matysek, A. Matwijczuk, M. Florek, J. Barłowska, A. Wolanciuk, A. Matwijczuk, E. Chruściel, R. Walkowiak, D. Karcz, B. Gładyszewska, Application of FTIR spectroscopy for analysis of the quality of honey, BIO Web Conf. 10 (2018) 02008. https://doi.org/10.1051/bioconf/20181002008.
  • [32] F. Muthreich, B. Zimmermann, H.J.B. Birks, C.M. Vila-Viçosa, A.W.R. Seddon, Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research, J. Biogeogr. 47 (2020) 1298–1309. https://doi.org/10.1111/jbi.13817.
  • [33] C. Engelbrekt, K.H. Sørensen, J. Zhang, A.C. Welinder, P.S. Jensen, J. Ulstrup, Green synthesis of gold nanoparticles with starch – glucose and application in bioelectrochemistry, J. Mater. Chem. 19 (2009) 7839–7847. https://doi.org/10.1039/b911111e.
  • [34] D. Steinigeweg, M. Schütz, M. Salehi, S. Schlücker, Fast and Cost-Effective Purifi cation of Gold Nanoparticles in the 20 – 250 nm Size Range by Continuous Density Gradient Centrifugation, Small. 7 (2011) 2443–2448. https://doi.org/10.1002/smll.201100663.
  • [35] X. Su, B. Fu, J. Yuan, Gold nanocluster-coated gold nanorods for simultaneously enhanced photothermal performance and stability, Mater. Lett. 188 (2017) 111–114. https://doi.org/10.1016/j.matlet.2016.11.051.
  • [36] R. Bhattacharya, C.R. Patra, S. Wang, L. Lu, M.J. Yaszemski, D. Mukhopadhyay, P. Mukherjee, Assembly of gold nanoparticles in a rod-like fashion using proteins as templates, Adv. Funct. Mater. 16 (2006) 395–400. https://doi.org/10.1002/adfm.200500347.
  • [37] I. Yazgan, A. Gümüş, K. Gökkuş, M.A. Demir, S. Evecen, H.A. Sönmez, R.M. Miller, F. Bakar, A. Oral, S. Popov, M.S. Toprak, On the effect of modified carbohydrates on the size and shape of gold and silver nanostructures, Nanomaterials. 10 (2020) 1–17. https://doi.org/10.3390/nano10071417.
  • [38] V. Sharma, K. Park, M. Srinivasarao, Shape separation of gold nanorods using centrifugation, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 4981– 4985.
  • [39] P. Priecel, H. Adekunle, R. Herrera, Z. Zhong, J. Antonio, Anisotropic gold nanoparticles : Preparation and applications in catalysis, Chinese J. Catal. 37 (2016) 1619–1650. https://doi.org/10.1016/S1872-2067(16)62475-0.
  • [40] N.D. Burrows, A.M. Vartanian, N.S. Abadeer, E.M. Grzincic, L.M. Jacob, W. Lin, J. Li, J.M. Dennison, J.G. Hinman, C.J. Murphy, Anisotropic Nanoparticles and Anisotropic Surface Chemistry, J. Phys. Chem. Lett. 7 (2016) 632–641. https://doi.org/10.1021/acs.jpclett.5b02205.
  • [41] T. Ming, X. Kou, H. Chen, T. Wang, H.L. Tam, K.W. Cheah, J.Y. Chen, J. Wang, Ordered gold nanostructure assemblies formed by droplet evaporation, Angew. Chemie - Int. Ed. 47 (2008) 9685–9690. https://doi.org/10.1002/anie.200803642.
APA Bakar F, SÖNMEZ H, Evecen S, TURAN B, DEMİR M, Gumus A, ÇETER T, yazgan i (2020). Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. , 1 - 8. 10.46810/tdfd.822928
Chicago Bakar Fatma,SÖNMEZ Hamide Ayçin,Evecen Senanur,TURAN Buse,DEMİR Mehmet Ali,Gumus Abdurrahman,ÇETER Talip,yazgan idris Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. (2020): 1 - 8. 10.46810/tdfd.822928
MLA Bakar Fatma,SÖNMEZ Hamide Ayçin,Evecen Senanur,TURAN Buse,DEMİR Mehmet Ali,Gumus Abdurrahman,ÇETER Talip,yazgan idris Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. , 2020, ss.1 - 8. 10.46810/tdfd.822928
AMA Bakar F,SÖNMEZ H,Evecen S,TURAN B,DEMİR M,Gumus A,ÇETER T,yazgan i Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. . 2020; 1 - 8. 10.46810/tdfd.822928
Vancouver Bakar F,SÖNMEZ H,Evecen S,TURAN B,DEMİR M,Gumus A,ÇETER T,yazgan i Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. . 2020; 1 - 8. 10.46810/tdfd.822928
IEEE Bakar F,SÖNMEZ H,Evecen S,TURAN B,DEMİR M,Gumus A,ÇETER T,yazgan i "Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures." , ss.1 - 8, 2020. 10.46810/tdfd.822928
ISNAD Bakar, Fatma vd. "Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures". (2020), 1-8. https://doi.org/10.46810/tdfd.822928
APA Bakar F, SÖNMEZ H, Evecen S, TURAN B, DEMİR M, Gumus A, ÇETER T, yazgan i (2020). Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa ve Fen Dergisi, 9(2), 1 - 8. 10.46810/tdfd.822928
Chicago Bakar Fatma,SÖNMEZ Hamide Ayçin,Evecen Senanur,TURAN Buse,DEMİR Mehmet Ali,Gumus Abdurrahman,ÇETER Talip,yazgan idris Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa ve Fen Dergisi 9, no.2 (2020): 1 - 8. 10.46810/tdfd.822928
MLA Bakar Fatma,SÖNMEZ Hamide Ayçin,Evecen Senanur,TURAN Buse,DEMİR Mehmet Ali,Gumus Abdurrahman,ÇETER Talip,yazgan idris Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa ve Fen Dergisi, vol.9, no.2, 2020, ss.1 - 8. 10.46810/tdfd.822928
AMA Bakar F,SÖNMEZ H,Evecen S,TURAN B,DEMİR M,Gumus A,ÇETER T,yazgan i Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa ve Fen Dergisi. 2020; 9(2): 1 - 8. 10.46810/tdfd.822928
Vancouver Bakar F,SÖNMEZ H,Evecen S,TURAN B,DEMİR M,Gumus A,ÇETER T,yazgan i Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa ve Fen Dergisi. 2020; 9(2): 1 - 8. 10.46810/tdfd.822928
IEEE Bakar F,SÖNMEZ H,Evecen S,TURAN B,DEMİR M,Gumus A,ÇETER T,yazgan i "Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures." Türk Doğa ve Fen Dergisi, 9, ss.1 - 8, 2020. 10.46810/tdfd.822928
ISNAD Bakar, Fatma vd. "Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures". Türk Doğa ve Fen Dergisi 9/2 (2020), 1-8. https://doi.org/10.46810/tdfd.822928