Yıl: 2020 Cilt: 48 Sayı: 2 Sayfa Aralığı: 99 - 118 Metin Dili: İngilizce DOI: 10.15671/hjbc.629355 İndeks Tarihi: 05-10-2021

Versatile Polymeric Cryogels and Their Biomedical Applications

Öz:
Cryogels are interconnected macroporous materials, which are synthesized under semi-frozen conditions. They canbe either produced as pure polymeric or composite, that can find a variety of applications in several research field.The excellent features of composite cryogels such as, biocompatibility, physical resistance and sensitivity, making themextremely suitable for biomedical applications. They commonly take place in therapeutic, diagnostic and pharmaceuticalapplications in the field of biomedical research. This review focuses on the biomedical applications of composite cryogels,particularly in the field of tissue engineering, drug delivery systems and protein diagnosis.
Anahtar Kelime:

Çok Yönlü Polimerik Kriyojeller ve Biyomedikal Uygulamaları

Öz:
Kriyojeller, yarı donmuş koşullar altında sentezlenen birbirine bağlı makro gözenekli malzemelerdir. Birçok araştırma alanında çeşitli uygulamalar bulabilen kriyojeller saf polimerik veya kompozit olarak üretilebilirler. Biyouyumluluk, fiziksel direnç ve hassasiyet gibi kompozit kriyojelerin mükemmel özellikleri, onları biyomedikal uygulamalar için son derece uygun kılar. Genellikle biyomedikal araştırma alanındaki terapötik, teşhis ve farmasötik uygulamalarda yer alırlar. Bu derleme, özellikle doku mühendisliği, ilaç salınım sistemleri ve protein teşhisi alanındaki kompozit kriyojellerin biyomedikal uygulamalarına odaklanmaktadır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. S. Hajizadeh, H. Kirsebom B. Mattiasson, Characterization of macroporous carbon-cryostructured particle gel, an adsorbent for small organic molecules, Soft. Matter., 6 (2010) 5562-5569.
  • 2. P. Persson, O. Baybak, F. Plieva, I.Y. Galaev, B. Mattiasson, B. Nilsson, A. Axelsson, Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles, Biotechnol. Bioeng. 88 (2004) 224-236.
  • 3. S. Akgönüllü, H. Yavuz, A. Denizli, Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine, Artif. Cell Nanomed. B., 45(4) (2017) 800-807.
  • 4. D.B; Raina, A. Kumar, Cryogels and related research: a glance over the past few decades in super macroporous cryogels, ed A. Kumar, CRC Press, (2016) 3-34.
  • 5. K. Cetin, A. Denizli 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs, Colloid. Surface. B., 126 (2015) 401-406.
  • 6. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B., 1 (2013) 2682-2695.
  • 7. N.S. Bibi, N.K. Singh, R.N. Dsouza, M. Aasim, M.F. Lahore, Synthesis and performance of megaporous immobilized metalion affinity cryogels for recombinant protein capture and purification, J. Chromatogr. A., 1272 (2013) 145-149.
  • 8. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, P. Thavarungkul, A novel molecularly imprinted chitosan– acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin, Analyst., 139 (2014) 6160-6167.
  • 9. S.P. Tao, C. Wang, Y. Sun, Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein, J. Chromatog. A., 1359 (2014) 76-83.
  • 10. M. Andaç, G. Baydemir, H. Yavuz, A. Denizli, Molecularly imprinted composite cryogel for albumin depletion from human serum, J. Mol. Recognit., 25 (2012) 555-563.
  • 11. K.R. Hixon, T. Lu, S.A. Sell, A comprehensive review of cryogels and their roles in tissue engineering applications, Acta Biomater., 62 (2017) 29-41.
  • 12. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B, 1 (2013) 2682-2695.
  • 13. M. Andac, F.M. Plieva, A. Denizli, I. Y. Galaev, B. Mattiasson, Poly(hydroxyethyl methacrylate)-based macroporous hydrogels with bisulfide cross-linker, Macromol. Chem. Phys., 209 (2008) 577-584.
  • 14. M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical Applications of Polymeric Cryogels. Appl. Sci., 9 (2019) 553.
  • 15. W.P. Daley, S.B. Peters, M. Larsen, Extracellular matrix dynamics in development and regenerative medicine, J. Cell Sci., 121 (2008) 255-264.
  • 16. F.J. O’Brien, Biomaterials & scaffolds for tissue engineering. Mater. Today, 14 (2011) 88-95.
  • 17. Tripathi, A.; Kathuria, N.; Kumar, A. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering, J. Biomed. Mater. Res. A, 90 (2009) 680-694.
  • 18. S. Bhat, A. Tripathi, A. Kumar, Supermacroprous chitosanagarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering, J. R. Soc. Interface., 8 (2011) 540-554.
  • 19. V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445- 451.
  • 20. R. Mishra, A. Kumar, Effect of plasma polymerization on physicochemical properties of biocomposite cryogels causing a differential behavior of human osteoblasts, J. Colloid Interface Sci., 431 (2014) 139-148.
  • 21. S. Bhat, L. Lidgren, A. Kumar, In Vitro Neo-cartilage formation on a three-dimensional composite polymeric cryogel matrix, Macromol. Biosci., 13 (2013) 827-837.
  • 22. S. Gupta, P.R. Bhat, B.P. Jagdale, L. Chaudhari, K.C. Lidgren, A. Kumar, Evaluation of three-dimensional chitosan-agarosegelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model, Tissue Eng. Part A., 20 (2014) 3101-3111.
  • 23. R. Mishra, S.K. Goel, K.C. Gupta, A. Kumar, Biocomposite cryogels as tissue engineered biomaterials for regeneration of critical-sized cranial bone defects, Tissue Eng. Part A., 20 (2013) 751-62.
  • 24. C.L. Salgado, L. Grenho, M.H. Fernandes, B.J. Colaço, F.J. Monteiro, Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration, J. Biomed. Mater. Res. - Part A., 104 (2016) 57-70.
  • 25. S.S. Suner, S. Demirci, B. Yetiskin, R. Fakhrullin, E. Naumenko, O. Okay, R.S. Ayyala, N. Sahiner, Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering, Int. J. Biol. Macromol., 130 (2019) 627- 635.
  • 26. K.R. Hixon, C.T. Eberlin, T. Lu, S.M. Neal, N.D. Case, S.H. McBride-Gagyi, S.A. Sell, The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration, Biomed. Mater., 12 (2017) 025005.
  • 27. D.B. Raina, H. Isaksson, A.K. Teotia, L. Lidgren, M. Tägil, A. Kumar, Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration, J. Control. Release., 235 (2016) 365-378.
  • 28. I.U. Allan, B.A. Tolhurst, R.V. Shevchenko, M.B. Dainiak, M. Illsley, A. Ivanov, H.; Jungvid, I.Y. Galaev, S.L. James, S.V. Mikhalovsky, S.E. James, An: In vitro evaluation of fibrinogen and gelatin containing cryogels as dermal regeneration scaffolds, Biomater. Sci., 4 (2016) 1007-1014.
  • 29. T. Takei, H. Nakahara, S. Tanaka, H. Nishimata, M. Yoshida, K. Kawakami, Effect of chitosan-gluconic acid conjugate/ poly(vinyl alcohol) cryogels as wound dressing on partialthickness wounds in diabetic rats, J. Mater. Sci. Mater. Med., 24 (2013) 2479-2487.
  • 30. N. A. Temofeew, K. R. Hixon, S.H. McBride-Gagyi, S.A. Sell, The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus. J. Mater. Sci. Mater. Med., 28 (2017) 36.
  • 31. N.X. Wang, H.A. von Recum, Affinity‐based drug delivery, Macromol. Biosci., 11 (2011) 321-332.
  • 32. G. P. Carino, E. Mathiowitz, Oral insulin delivery. Adv. Drug. Deliv. Rev., 35 (1999) 249-257.
  • 33. V.P. Torchilin, R. Rammohan, V. Weissig, T.S. Levchenko, Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors, Proc. Natl. Acad. Sci. U.S.A., 98 (2001) 8786-8791.
  • 34. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem. Rev. 99 (1999) 3181-3198.
  • 35. J. Kopeček, J. Yang, Hydrogels as smart biomaterials, Polym. Intern., 56 (2007) 1078-1098.
  • 36. K. Cetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci., Part A., 54 (2017) 502-508.
  • 37. M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers (Basel). 3 (2011) 1215- 1242.
  • 38. W. Zhu, H. Peng, M. Luo, N. Yu, H.; Xiong, R. Wang, Y. Li, Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples, Food Chem., 261 (2018) 87-95.
  • 39. K. Sawahata, M. Hara, H. Yasunaga, Y. Osada, Electrically controlled drug delivery system using polyelectrolyte gels, J. Controlled Release., 14 (1990) 253-262.
  • 40. I.C. Kwon, Y.H. Bae, T. Okano, S.W. Kim, Drug release from electric current sensitive polymers, J. Controlled Release., 17 (1991) 149-156.
  • 41. M. Bakhshpour, H. Yavuz, A. Denizli, Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes, Artif. Cells. Nanomed. Biotechnol., 46 (2018) 946-954
  • 42. D.R. Kryscio, N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 8(2) (2012) 461−473.
  • 43. Luchini, D.H. Geho, B. Bishop, D. Tran, C. Xia, R.L. Dufour, C.D. Jones, V.; Espina, A. Patanarut, W. Zhou, M.M. Ross, A. Tessitore, E.F. Petricoin, L.A. Liotta, Smart Hydrogel Particles: Biomarker Harvesting, One-Step Affinity Purification, Size Exclusion, and Protection against Degradation, Nano. Lett., 8 (2008) 350-361.
  • 44. J.M. Knipe, F. Chen, N.A. Peppas, Enzymatic biodegradation of hydrogels for protein delivery targeted to the small intestine, Biomacromol., 16 (2015) 962−972.
  • 45. C.E. Brubaker, P.B. Messersmith, Enzymatically degradable mussel-inspired adhesive hydrogel, Biomacromol., 12 (2011) 4326−4334.
  • 46. Mamada, T. Tanaka, D. Kungwachakun, M. Irie, Photo induced phase transition of gels, Macromolecules., 23 (1990) 1517-1519.
  • 47. J. Kost, R. Langer, Responsive polymeric delivery systems, Adv. Drug Deliv. Rev., 64 (2012) 327-341.
  • 48. M.V. Dinu, A.I. Cocarta, E.S. Dragan, Synthesis, characterization and drug release properties of 3Dchitosan/ clinoptilolite biocomposite cryogels, Carbohyd. Poly., 153 (2016) 203-211.
  • 49. E. Tamahkar, M. Bakhshpour, A. Denizli, Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release, J Biomater Sci Polym Ed Title(s), 6 (2019) 450-461.
  • 50. M. Caka, T. Ceren, D.A. Uygun, M. Uygun, S. Akgöl, A. Denizli, Controlled release of curcumin from poly(HEMA-MAPA) membrane, Artif. Cells Nanomed. Biotechnol., 45 (2017) 426-431.
  • 51. B. Kostova, D. Momekova, P. Petrov, G. Momekov, N. Toncheva-Moncheva, C.B. Tsvetanov, N. Lambov, Poly(ethoxytriethyleneglycol acrylate) cryogels as novel sustained drug release systems for oral application, Polymer, 52 (2011) 1217-1222.
  • 52. Gokturk, A. Derazshamshir, F. Yılmaz, A. Denizli, Poly(vinyl alcohol)/polyethyleneimine (PVA/PEI) blended monolithic cryogel columns for the depletion of haemoglobin from human blood, Sep. Sci. Technol, 51 (2016) 1787-1797.
  • 53. C. Yang, Y. Zhang, W.Q. Cao, X.F. Ji J. Wang, Y.N. Yan, T.L. Zhong, Y. Wang, Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum, Polymers., 10 (2018) 97.
  • 54. J.X. Yun, G.R. Jespersen, H. Kirsebom, P.E. Gustavsson, B. Mattiasson, I.Y. Galaev, An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds, J. Chromatogr. A, 1218 (2011) 5487-5497.
  • 55. R.D. Arrua, C.I.A. Igarzabal, Macroporous monolithic supports for affinity chromatography, J. Sep. Sci., 34 (2011) 1974-1987.
  • 56. S. Sun, Y. Tang, Q. Fu, X. Liu, L. Guo, Y. Zhao, C. Chang, Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G, Int. J. Biol. Macromol., 50 (2012) 1002- 1007.
  • 57. M. Bakhshpour, N. Bereli, S. Şenel, Preparation and characterization of thiophilic cryogels with 2-mercapto ethanol as the ligand for IgG purification. Colloid. Surface. B., 113 (2014) 261-268.
  • 58. M. Bakhshpour, A. Derazshamshir, N. Bereli, A. Elkak, A. Denizli, [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma, Mater. Sci. Engin. C. 61 (2016) 824-831.
  • 59. Y. Saylan, N. Bereli, L. Uzun, A. Denizli, Monolithic boronate affinity columns for IgG separation, Sep. Sci. Technol., 49 (2014) 1555-1565.
  • 60. C. Yang, X.L. Zhou, Y.R. Liu, Y. Zhang, J. Wang, L.L. Tian Y.N. Yan, Extensive imprinting adaptability of polyacrylamide based amphoteric cryogels against protein molecules, Chin. J. Anal. Chem., 44 (2016) 1322-1327.
  • 61. S. Zhao, D. Wang, S. Zhu, X. Liu, H. Zhang, 3D cryogel composites as adsorbent for isolation of protein and small molecules, Talanta., 191 (2019) 229-234.
  • 62. M. Andaç, A. Denizli, Affinity-recognition-based polymeric cryogels for protein depletion studies, RSC Adv., 4 (2014) 31130-31141.
  • 63. M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B, 1021 (2016) 69-80.
  • 64. M. Andac, I.Y. Galaev, A. Denizli, Molecularly Imprinted Cryogels for Protein Purification: Chapter 22., In Biomaterials from Nature for Advanced Devices and Therapies, Eds: Nuno M. Neves, Rui L. Reis; Wiley, USA ISBN: 978-1-118-47805-9. 2016 403-428.
  • 65. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Selective removal of the autoantibodies from rheumatoid arthritis patient plasma using protein A carrying affinity cryogels, Biochem. Eng. J., 51 (2010) 153-159.
  • 66. Perçin, G. Baydemir, B. Ergün, A. Denizli, Macroporous PHEMA-based cryogel discs for bilirubin removal, Artif. Cell. Nanomed. B., 41 (2013) 172-177.
  • 67. W. Akande, L. Mikhalovska, S. James, S. Mikhalovsky, Affinity binding macroporous monolithic cryogel as a matrix for extracorporeal apheresis medical devices, Int. J. Biomed. Mater. Res., 3 (2015) 56-63.
  • 68. C. Yang, Y. Zhang, W.Q. Cao, X.F. Ji, J. Wang, Y.N. Yan, T.L. Zhong, Y., Wang, Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum, Polymer., 10 (2018) 97.
  • 69. K. Zhao, T. Chen, B. Lin, W. Cui, B. Kan, N. Yang, X. Zhou, X. Zhang, K, J., Wei, Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness, React. Funct. Polym., 87 (2015) 7-14.
  • 70. C. Yang, Y.R. Liu, Y. Zhang, J. Wang, L.L. Tian, Y.N. Yan, W.Q. Cao, Y.Y. Wang, Depletion of abundant human serum proteins by per se imprinted cryogels based on sample heterogeneity, Proteomics., 17 (2017) 1600284.
  • 71. C. Yang, X.L. Zhou, Y.R. Liu, J. Wang, L.L. Tian, Y. Zhang, X.Y. Hu, Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels, J. Appl. Polym. Sci., 113 (2016) 43851.
  • 72. M.E. Çorman, C. Armutcu, S. Özkara, L. Uzun, A. Denizli, Molecularly imprinted cryogel cartridges for the specific filtration and rapid separation of interferon alpha, RSC Adv., 5 (2015) 45015.
  • 73. G. Baydemir, M. Andaç, I. Perçin, A. Derazshamshir, A. Denizli, Molecularly imprinted composite cryogels for hemoglobin depletion from human blood, J. Mol. Recognit., 27 (2014) 528-536.
  • 74. G. Baydemir, E.A. Türkoğlu, M. Andaç, I. Perçin, A. Denizli, Composite cryogels for lysozyme purification, Biotechnol. Appl. Biochem., 62 (2015) 200-207.
  • 75. M. Andaç, G. Baydemir, H. Yavuz, A. Denizli, Molecularly imprinted composite cryogel for albumin depletion from human serum, J. Mol. Recognit., Special Issue (2012) 555- 563.
  • 76. M. Andaç, I.Y. Galaev, A. Denizli, Molecularly imprinted poly(hydroxyethyl methacrylate) based cryogel for albumin depletion from human serum, Colloid. Surface. B., 109 (2013) 259-265.
  • 77. M. Andac, F. M. Plieva, A. Denizli, I. Yu. Galaev, B. Mattiasson, Poly(hydroxyethyl methacrylate)‐based macroporous hydrogels with disulfide cross‐linker, Macromol. Chem. Phys., 209 (2008) 577-584.
APA Akgönüllü S, bakhshpour m, İdil N, ANDAÇ M, Yavuz Alagöz H, Denizli A (2020). Versatile Polymeric Cryogels and Their Biomedical Applications. , 99 - 118. 10.15671/hjbc.629355
Chicago Akgönüllü Semra,bakhshpour monireh,İdil Neslihan,ANDAÇ Müge,Yavuz Alagöz Handan,Denizli Adil Versatile Polymeric Cryogels and Their Biomedical Applications. (2020): 99 - 118. 10.15671/hjbc.629355
MLA Akgönüllü Semra,bakhshpour monireh,İdil Neslihan,ANDAÇ Müge,Yavuz Alagöz Handan,Denizli Adil Versatile Polymeric Cryogels and Their Biomedical Applications. , 2020, ss.99 - 118. 10.15671/hjbc.629355
AMA Akgönüllü S,bakhshpour m,İdil N,ANDAÇ M,Yavuz Alagöz H,Denizli A Versatile Polymeric Cryogels and Their Biomedical Applications. . 2020; 99 - 118. 10.15671/hjbc.629355
Vancouver Akgönüllü S,bakhshpour m,İdil N,ANDAÇ M,Yavuz Alagöz H,Denizli A Versatile Polymeric Cryogels and Their Biomedical Applications. . 2020; 99 - 118. 10.15671/hjbc.629355
IEEE Akgönüllü S,bakhshpour m,İdil N,ANDAÇ M,Yavuz Alagöz H,Denizli A "Versatile Polymeric Cryogels and Their Biomedical Applications." , ss.99 - 118, 2020. 10.15671/hjbc.629355
ISNAD Akgönüllü, Semra vd. "Versatile Polymeric Cryogels and Their Biomedical Applications". (2020), 99-118. https://doi.org/10.15671/hjbc.629355
APA Akgönüllü S, bakhshpour m, İdil N, ANDAÇ M, Yavuz Alagöz H, Denizli A (2020). Versatile Polymeric Cryogels and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry, 48(2), 99 - 118. 10.15671/hjbc.629355
Chicago Akgönüllü Semra,bakhshpour monireh,İdil Neslihan,ANDAÇ Müge,Yavuz Alagöz Handan,Denizli Adil Versatile Polymeric Cryogels and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry 48, no.2 (2020): 99 - 118. 10.15671/hjbc.629355
MLA Akgönüllü Semra,bakhshpour monireh,İdil Neslihan,ANDAÇ Müge,Yavuz Alagöz Handan,Denizli Adil Versatile Polymeric Cryogels and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry, vol.48, no.2, 2020, ss.99 - 118. 10.15671/hjbc.629355
AMA Akgönüllü S,bakhshpour m,İdil N,ANDAÇ M,Yavuz Alagöz H,Denizli A Versatile Polymeric Cryogels and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry. 2020; 48(2): 99 - 118. 10.15671/hjbc.629355
Vancouver Akgönüllü S,bakhshpour m,İdil N,ANDAÇ M,Yavuz Alagöz H,Denizli A Versatile Polymeric Cryogels and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry. 2020; 48(2): 99 - 118. 10.15671/hjbc.629355
IEEE Akgönüllü S,bakhshpour m,İdil N,ANDAÇ M,Yavuz Alagöz H,Denizli A "Versatile Polymeric Cryogels and Their Biomedical Applications." Hacettepe Journal of Biology and Chemistry, 48, ss.99 - 118, 2020. 10.15671/hjbc.629355
ISNAD Akgönüllü, Semra vd. "Versatile Polymeric Cryogels and Their Biomedical Applications". Hacettepe Journal of Biology and Chemistry 48/2 (2020), 99-118. https://doi.org/10.15671/hjbc.629355