Yıl: 2021 Cilt: 55 Sayı: 1 Sayfa Aralığı: 99 - 112 Metin Dili: Türkçe DOI: 10.5578/mb.20217 İndeks Tarihi: 07-10-2021

Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları

Öz:
Candida auris, 2009 yılında tanımlanmasının ardından günümüze kadar geçen süre içinde farklı bölgeve ülkelerde klinik örneklerden izole edilmiştir. Tanımlanmasında yaşanan sorunlar; antifungal ilaçlara dirençözelliği; hastane ortamında uzun süre varlığını sürdürebilme, ortam temizliğinde standart olarak kullanılandezenfektanlara rağmen canlılığını koruyabilme, salgınlara neden olabilme potansiyeli ve görüldüğü bölgeve ülke sayısındaki belirgin artış nedeniyle üzerinde önemle durulan bir patojen haline gelen C.auris, nedenolduğu invaziv enfeksiyonların tedavisinde yaşanan güçlükler, yüksek mortalite oranları ve sahip olduğuantifungal direnç özellikleriyle 2018 yılında Dünya’da en çok endişe duyulan ilk 10 mantar arasında yeralmıştır. C.auris suşlarının %60-90’ının flukonazole dirençli olduğu, %10-30 kadarında amfoterisin B içinyüksek minimum inhibitör konsantrasyon değerlerinin elde edildiği ve %5’e varabilen oranlarda ekinokandinlerekarşı direnç gösterebildiği belirtilmektedir. C.auris suşlarında antifungal ilaç direncinden sorumlumekanizmaları ortaya koyabilmek ve in vitro direnç ile klinik yanıt arasındaki korelasyonu saptayabilmekamacıyla devam etmekte olan çalışmalardan elde edilen veriler bu konudaki bilgi birikimine önemli katkısağlamıştır. Mevcut veriler, C.auris suşlarında antifungal ilaç direncine neden olan mekanizmaların diğerCandida türlerindeki antifungal direnç mekanizmaları ile ortak özellik gösterebilmekle birlikte, ayrışan yönlerininde bulunduğunu ortaya koymaktadır. Bu derleme yazıda, C.auris’in antifungal ilaçlara azalmış duyarlılıkveya direncinden ve hastane ortamında sıra dışı bir şekilde canlılığını sürdürebilme potansiyelinden sorumlumoleküler mekanizmalar ve biyofilm ilişkili faktörler tartışılmıştır.
Anahtar Kelime:

Candida auris and Mechanisms of Antifungal Drug Resistance

Öz:
Candida auris has been isolated from clinical samples in different regions and countries since it was first described in 2009. Due to the difficulties in identification; decreased susceptibility or resistance to antifungal agents; exceptional capacity to colonize and persist on surfaces; ability to survive despite standard disinfection procedures; and significant increase in the number of regions and countries with reported cases, C.auris has become a global health concern and placed among the World’s ten most concerned fungi list in 2018. It is stated that 60-90% of C.auris strains are resistant to fluconazole, 10-30% exhibit high minimum inhibitory concentration values for amphotericin B, and up to 5% can be considered as resistant to echinocandins. Existing data obtained from ongoing research on molecular mechanisms of antifungal resistance in C.auris revealed some common features with other Candida species. However, diverging aspects are also reported. In this review article, current information on molecular mechanisms and biofilm-related factors responsible for decreased susceptibility or resistance to antifungal agents and unexpectedly high survival potential of C.auris have been discussed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Bibliyografik
  • 1. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol 2009; 53: 41-4.
  • 2. Lockhart SR. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet Biol 2019; 131: 103243.
  • 3. Gülmez D. Candida auris: on yılda dünyaya yayılmayı başaran fungal patojen. FLORA 2019; 24: 263-71.
  • 4. Kean R, Brown J, Gulmez D, Ware A, Ramage G. Candida auris: a decade of understanding of an enigmatic pathogenic yeast. J Fungi (Basel) 2020; 6: 30.
  • 5. Kim MN, Shin JH, Sung H, Lee K, Kim EC, Ryoo N, et al. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin Infect Dis 2009; 48: e57-61.
  • 6. Spivak ES, Hanson KE. Candida auris: an emerging fungal pathogen. J Clin Microbiol 2018; 56: e01588-17.
  • 7. Lee WG, Shin JH, Uh Y, Kang MG, Kim SH, Park KH, et al. First three reported cases of nosocomial fungemia caused by Candida auris. J Clin Microbiol 2011; 49: 3139-42.
  • 8. de Cássia Orlandi Sardi J, Silva DR, Soares Mendes-Giannini MJ, Rosalen PL. Candida auris: epidemiology, risk factors, virulence, resistance, and therapeutic options. Microb Pathog 2018; 125: 116-21.
  • 9. Adam RD, Revathi G, Okinda N, Fontaine M, Shah J, Kagotho E, et al. Analysis of Candida auris fungemia at a single facility in Kenya. Int J Infect Dis 2019; 85: 182-7.
  • 10. van Schalkwyk E, Mpembe RS, Thomas J, Shuping L, Ismail H, Lowman W, et al; GERMS-SA. epidemiologic shift in candidemia driven by Candida auris, South Africa, 2016-2017. Emerg Infect Dis 2019; 25: 1698-707.
  • 11. Mathur P, Hasan F, Singh PK, Malhotra R, Walia K, Chowdhary A. Five-year profile of candidaemia at an Indian trauma centre: High rates of Candida auris blood stream infections. Mycoses 2018; 61: 674-80.
  • 12. Calvo B, Melo AS, Perozo-Mena A, Hernandez M, Francisco EC, Hagen F, et al. First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia. J Infect 2016; 73: 369-74.
  • 13. Rudramurthy SM, Chakrabarti A, Paul RA, Sood P, Kaur H, Capoor MR, et al. Candida auris candidaemia in Indian ICUs: analysis of risk factors. J Antimicrob Chemother 2017; 72: 1794-801.
  • 14. Ruiz-Gaitán A, Moret AM, Tasias-Pitarch M, Aleixandre-López AI, Martínez-Morel H, Calabuig E, et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018; 61: 498-505.
  • 15. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 2016; 5: 35.
  • 16. Chaabane F, Graf A, Jequier L, Coste AT. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front Microbiol 2019; 10: 2788.
  • 17. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous Emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017; 64: 134-40.
  • 18. Pekard-Amenitsch S, Schriebl A, Posawetz W, Willinger B, Kolli B, Buzina W. Isolation of Candida auris from ear of otherwise healthy patient, Austria, 2018. Emerg Infect Dis 2018; 24: 1596-7.
  • 19. Borman AM, Szekely A, Johnson EM. Comparative pathogenicity of united kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 2016; 1: e00189-16.
  • 20. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-resistant Candida haemulonii and C.auris, Tel Aviv, Israel. Emerg Infect Dis 2017; 23: 195-203.
  • 21. Fakhim H, Vaezi A, Dannaoui E, Chowdhary A, Nasiry D, Faeli L, et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses 2018; 61: 377-82.
  • 22. Wang X, Bing J, Zheng Q, Zhang F, Liu J, Yue H, et al. The first isolate of Candida auris in China: clinical and biological aspects. Emerg Microbes Infect 2018; 7: 93.
  • 23. Osei Sekyere J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen 2018; 7: e00578.
  • 24. Arikan-Akdagli S, Ghannoum M, Meis JF. Antifungal resistance: specific focus on multidrug resistance in Candida auris and secondary azole resistance in Aspergillus fumigatus. J Fungi (Basel) 2018; 4: 129.
  • 25. Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother 2018; 73: 891-9.
  • 26. Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A. comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother 2017; 61: e00485-17.
  • 27. Hyde KD, Al-Hatmi AMS, Andersen B, Boekhout T, Buzina W, Dawson TL Jr, et al. The world’s ten most feared fungi. Fungal Diversity 2018; 93: 161-94.
  • 28. Eyre DW, Sheppard AE, Madder H, Moir I, Moroney R, Quan TP, et al. A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 2018; 379: 1322-31.
  • 29. Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A, et al. Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 2018; 98: 433-6.
  • 30. Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD, et al. Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis 2017; 23: 328-31.
  • 31. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382-402.
  • 32. Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017; 216(suppl3): S445-S51.
  • 33. Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, et al. The quiet and underappreciated rise of drug-resistant ınvasive fungal pathogens. J. Fungi 2020; 6: 138.
  • 34. Robbins N, Caplan T, Cowen LE. Molecular evolution of antifungal drug resistance. Annu Rev Microbiol 2017; 71: 753-75.
  • 35. Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics 2020; 9: 312.
  • 36. Parks LW, Casey WM. Physiological implications of sterol biosynthesis in yeast. Annual Review of Microbiology 1995; 49: 95-116.
  • 37. UpToDate. Pharmacology of azoles. Available from: https://www.uptodate.com/contents/pharmacologyof- azoles (Accessed date: 28 October 2020)
  • 38. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012; 2012: 713687.
  • 39. Healey KR, Kordalewska M, Jiménez Ortigosa C, Singh A, Berrío I, Chowdhary A, et al. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother 2018; 62: e01427-18.
  • 40. Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, et al. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 1998; 42: 2932-7.
  • 41. Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 2003; 22: 291-300.
  • 42. Morschhäuser J, Barker KS, Liu TT, BlaB-Warmuth J, Homayouni R, Rogers PD. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 2007; 3: e164.
  • 43. Chatterjee S, Alampalli SV, Nageshan RK, Chettiar ST, Joshi S, Tatu US. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics 2015; 16: 686.
  • 44. Sharma C, Kumar N, Pandey R, Meis JF, Chowdhary A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect 2016; 13: 77-82.
  • 45. Rybak JM, Doorley LA, Nishimoto AT, Barker KS, Palmer GE, Rogers PD. Abrogation of triazole resistance upon deletion of cdr1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother 2019; 63: e00057-19.
  • 46. Martins IM, Cortés JC, Muñoz J, Moreno MB, Ramos M, Clemente-Ramos JA, et al. Differential activities of three families of specific beta (1,3) glucan synthase inhibitors in wild-type and resistant strains of fission yeast. J Biol Chem 2011; 286: 3484-96.
  • 47. UpToDate. Pharmacology of echinocandins. Available from: https://www.uptodate.com/contents/ pharmacology-of-echinocandins (Accessed date: 28 October 2020)
  • 48. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 2005; 49: 3264-73.
  • 49. Rhodes J, Abdolrasouli A, Farrer RA, Cuomo CA, Aanensen DM, Armstrong-James D, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect 2018; 7: 43.
  • 50. Kordalewska M, Lee A, Park S, Berrio I, Chowdhary A, Zhao Y, et al. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob Agents Chemother 2018; 62: e00238-18.
  • 51. de-Oliveira SC, Rodrigues AG. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms 2020; 8: 154.
  • 52. Haynes MP, Chong PL, Buckley HR, Pieringer RA. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Biochemistry 1996; 35: 7983-92.
  • 53. Nolte FS, Parkinson T, Falconer DJ, Dix S, Williams J, Gilmore C, et al. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother 1997; 41: 196-9.
  • 54. Spampinato C, Leonardi D. Candida Infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013; 2013: 204237.
  • 55. Gopinathan S, Janagond AB, Agatha D, Thenmozhivalli PR. Detection of FUR1 gene in 5-Flucytosine resistant Candida isolates in vaginal candidiasis patients. J Clin Diagn Res 2013; 7: 2452–5.
  • 56. Waldorf AR, Polak A. Mechanisms of action of 5-fluorocytosine. Antimicrob Agents Chemother 1983; 23: 79-85.
  • 57. Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCA, de Oliveira HC, et al. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 2017; 8: 36.
  • 58. Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog 2012; 8: e1002585.
  • 59. Lewis, K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5: 48-56.
  • 60. Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 2002; 49: 973-80.
  • 61. Romera D, Aguilera-Correa JJ, Gadea I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J. Candida auris: a comparison between planktonic and biofilm susceptibility to antifungal drugs. J Med Microbiol 2019; 68: 1353-8.
  • 62. Hawser SP, Douglas LJ. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 1995; 39: 2128-31.
  • 63. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 2018; 3: e00334-18.
  • 64. Dominguez EG, Zarnowski R, Choy HL, Zhao M, Sanchez H, Nett JE, et al. Conserved role for biofilm matrix polysaccharides in Candida auris drug resistance. mSphere 2019; 4: e00680-18.
  • 65. Piedrahita CT, Cadnum JL, Jencson AL, Shaikh AA, Ghannoum MA, Donskey CJ. Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida Species. Infect Control Hosp Epidemiol 2017; 38: 1107-9.
  • 66. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol 2017; 55: 2996-3005.
  • 67. Cadnum JL, Shaikh AA, Piedrahita CT, Sankar T, Jencson AL, Larkin EL, et al. Effectiveness of disinfectants against Candida auris and other Candida species. Infect Control Hosp Epidemiol 2017; 38: 1240-3.
  • 68. Centers for Disease Control and Prevention (CDC). Infection prevention and control for Candida auris. Available from: https://www.cdc.gov/fungal/candida-Candida/c-auris-infection-control.html (Accessed date: 28 October 2020).
  • 69. de Groot T, Chowdhary A, Meis JF, Voss A. Killing of Candida auris by UV-C: Importance of exposure time and distance. Mycoses 2019; 62: 408-12.
APA Alp S, Arikan-Akdagli S (2021). Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. , 99 - 112. 10.5578/mb.20217
Chicago Alp Sehnaz,Arikan-Akdagli Sevtap Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. (2021): 99 - 112. 10.5578/mb.20217
MLA Alp Sehnaz,Arikan-Akdagli Sevtap Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. , 2021, ss.99 - 112. 10.5578/mb.20217
AMA Alp S,Arikan-Akdagli S Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. . 2021; 99 - 112. 10.5578/mb.20217
Vancouver Alp S,Arikan-Akdagli S Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. . 2021; 99 - 112. 10.5578/mb.20217
IEEE Alp S,Arikan-Akdagli S "Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları." , ss.99 - 112, 2021. 10.5578/mb.20217
ISNAD Alp, Sehnaz - Arikan-Akdagli, Sevtap. "Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları". (2021), 99-112. https://doi.org/10.5578/mb.20217
APA Alp S, Arikan-Akdagli S (2021). Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. Mikrobiyoloji Bülteni, 55(1), 99 - 112. 10.5578/mb.20217
Chicago Alp Sehnaz,Arikan-Akdagli Sevtap Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. Mikrobiyoloji Bülteni 55, no.1 (2021): 99 - 112. 10.5578/mb.20217
MLA Alp Sehnaz,Arikan-Akdagli Sevtap Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. Mikrobiyoloji Bülteni, vol.55, no.1, 2021, ss.99 - 112. 10.5578/mb.20217
AMA Alp S,Arikan-Akdagli S Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. Mikrobiyoloji Bülteni. 2021; 55(1): 99 - 112. 10.5578/mb.20217
Vancouver Alp S,Arikan-Akdagli S Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları. Mikrobiyoloji Bülteni. 2021; 55(1): 99 - 112. 10.5578/mb.20217
IEEE Alp S,Arikan-Akdagli S "Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları." Mikrobiyoloji Bülteni, 55, ss.99 - 112, 2021. 10.5578/mb.20217
ISNAD Alp, Sehnaz - Arikan-Akdagli, Sevtap. "Candida auris ve Antifungal İlaçlara Direnç Mekanizmaları". Mikrobiyoloji Bülteni 55/1 (2021), 99-112. https://doi.org/10.5578/mb.20217