Yıl: 2021 Cilt: 8 Sayı: 3 Sayfa Aralığı: 969 - 976 Metin Dili: İngilizce DOI: 10.18596/jotcsa.959577 İndeks Tarihi: 29-07-2022

Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots

Öz:
Boron nitride quantum dots (BNQDs) are of high interest with their excellent photophysical andstructural characteristics. BNQDs can be synthesized through hydrothermal synthesis methods withdifferent nitrogen precursors; however, until now, the optical properties of BNQDS synthesized withdifferent nitrogen precursors have not been compared in details yet. In this study, BNQDS weresynthesized through hydrothermal synthesis methods by using urea, melamine, and thiourea as nitrogenprecursors and optical properties of BNQDS were compared by comparing emission and excitationcharacteristics of each BNQD synthesized by different nitrogen precursor. Structural properties of BNQDswere compared through infrared spectrum of each BNQDs. Our results revealed that the change innitrogen precursor causes significant differences in photophysical and structural properties of BNQDs.
Anahtar Kelime: Quantum dots boron nitride fluorescence

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wang X, Sun G, Li N, Chen P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev. 2016;45(8):2239–62. < DOI>.
  • 2. Xu Y, Wang X, Zhang WL, Lv F, Guo S. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev. 2018;47(2):586–625. < DOI>.
  • 3. Xu Q, Cai W, Li W, Sreeprasad TS, He Z, Ong WJ, et al. Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy. 2018 Dec;10:222–40. < DOI>.
  • 4. Manikandan A, Chen Y-Z, Shen C-C, Sher C-W, Kuo H-C, Chueh Y-L. A critical review on twodimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics. Progress in Quantum Electronics. 2019 Nov;68:100226. < DOI>.
  • 5. Budak E, Ünlü C. Boron regulated dual emission in B, N doped graphene quantum dots. Optical Materials. 2021 Jan;111:110577. < DOI>.
  • 6. Budak E, Aykut S, Paşaoğlu ME, Ünlü C. Microwave assisted synthesis of boron and nitrogen rich graphitic quantum dots to enhance fluorescence of photosynthetic pigments. Materials Today Communications. 2020 Sep;24:100975. < DOI>.
  • 7. Budak E, Erdoğan D, Ünlü C. Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots. Photosynth Res. 2021 Jan;147(1):1–10. < DOI>.
  • 8. Lin L, Xu Y, Zhang S, Ross IM, Ong ACM, Allwood DA. Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small. 2014 Jan 15;10(1):60–5. < DOI>.
  • 9. Pan C, Long M, He J. Enhanced thermoelectric properties in boron nitride quantum-dot. Results in Physics. 2017;7:1487–91. < DOI>.
  • 10. Fan L, Zhou Y, He M, Tong Y, Zhong X, Fang J, et al. Facile microwave approach to controllable boron nitride quantum dots. J Mater Sci. 2017 Dec;52(23):13522–32. < DOI>.
  • 11. Matsoso BJ, Ranganathan K, Mutuma BK, Lerotholi T, Jones G, Coville NJ. Single-step synthesis of crystalline h-BN quantum- and nanodots embedded in boron carbon nitride films. Nanotechnology. 2017;28(10):105602. < DOI>.
  • 12. Thangasamy P, Santhanam M, Sathish M. Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS Appl Mater Interfaces. 2016 Jul;8(29):18647–51. < DOI>.
  • 13. Bandyopadhyay A, Yamijala SSRKC, Pati SK. Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: a theoretical study. Phys Chem Chem Phys. 2013;15(33):13881. < DOI>.
  • 14. Li H, Tay RY, Tsang SH, Zhen X, Teo EHT. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. Small. 2015 Dec;11(48):6491–9. < DOI>.
  • 15. Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental. 2019 May;245:87–99. < DOI>.
  • 16. Stampfl J, Tasch S, Leising G, Scherf U. Quantum efficiencies of electroluminescent poly(para-phenylenes). Synthetic Metals. 1995 Apr;71(1–3):2125–8. < DOI>.
  • 17. Yao Q, Feng Y, Rong M, He S, Chen X. Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Microchim Acta. 2017 Oct;184(10):4217–23. < DOI>.
  • 18. Huo B, Liu B, Chen T, Cui L, Xu G, Liu M, et al. One-Step Synthesis of Fluorescent Boron Nitride Quantum Dots via a Hydrothermal Strategy Using Melamine as Nitrogen Source for the Detection of Ferric Ions. Langmuir. 2017 Oct 10;33(40):10673– 8. < DOI>.
  • 19. Liu M, Xu Y, Wang Y, Chen X, Ji X, Niu F, et al. Boron Nitride Quantum Dots with Solvent-Regulated Blue/Green Photoluminescence and Electrochemiluminescent Behavior for Versatile Applications. Advanced Optical Materials. 2017 Feb;5(3):1600661. < DOI>.
  • 20. Liu B, Yan S, Song Z, Liu M, Ji X, Yang W, et al. One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology. Chem Eur J. 2016 Dec 23;22(52):18899–907. <DOI>.
  • 21. Fletcher AN, Bliss DE. Effects of chemical substituents of bicyclic dyes upon photodegradation parameters. Appl Phys. 1978;16:289.
APA Budak E, Ünlü C (2021). Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. , 969 - 976. 10.18596/jotcsa.959577
Chicago Budak Esranur,Ünlü Caner Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. (2021): 969 - 976. 10.18596/jotcsa.959577
MLA Budak Esranur,Ünlü Caner Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. , 2021, ss.969 - 976. 10.18596/jotcsa.959577
AMA Budak E,Ünlü C Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. . 2021; 969 - 976. 10.18596/jotcsa.959577
Vancouver Budak E,Ünlü C Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. . 2021; 969 - 976. 10.18596/jotcsa.959577
IEEE Budak E,Ünlü C "Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots." , ss.969 - 976, 2021. 10.18596/jotcsa.959577
ISNAD Budak, Esranur - Ünlü, Caner. "Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots". (2021), 969-976. https://doi.org/10.18596/jotcsa.959577
APA Budak E, Ünlü C (2021). Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. Journal of the Turkish Chemical Society, Section A: Chemistry, 8(3), 969 - 976. 10.18596/jotcsa.959577
Chicago Budak Esranur,Ünlü Caner Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. Journal of the Turkish Chemical Society, Section A: Chemistry 8, no.3 (2021): 969 - 976. 10.18596/jotcsa.959577
MLA Budak Esranur,Ünlü Caner Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.8, no.3, 2021, ss.969 - 976. 10.18596/jotcsa.959577
AMA Budak E,Ünlü C Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(3): 969 - 976. 10.18596/jotcsa.959577
Vancouver Budak E,Ünlü C Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(3): 969 - 976. 10.18596/jotcsa.959577
IEEE Budak E,Ünlü C "Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots." Journal of the Turkish Chemical Society, Section A: Chemistry, 8, ss.969 - 976, 2021. 10.18596/jotcsa.959577
ISNAD Budak, Esranur - Ünlü, Caner. "Effect of Nitrogen Precursor on Optical Properties of Hexagonal Boron Nitride Quantum Dots". Journal of the Turkish Chemical Society, Section A: Chemistry 8/3 (2021), 969-976. https://doi.org/10.18596/jotcsa.959577