Yıl: 2021 Cilt: 32 Sayı: 2 Sayfa Aralığı: 355 - 362 Metin Dili: İngilizce DOI: 10.52312/jdrs.2021.41 İndeks Tarihi: 12-10-2021

Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis

Öz:
Objectives: The aim of this study was to investigate the effectof cartilage thickness mismatch on tibiotalar articular contactpressure in osteochondral grafting from femoral condyles tomedial talar dome using a finite element analysis (FEA).Materials and methods: Flush-implanted osteochondral graftingwas performed on the talar centromedial aspect of the dome usingosteochondral plugs with two different cartilage thicknesses. Oneof the plugs had an equal cartilage thickness with the recipienttalar cartilage and the second plug had a thicker cartilagerepresenting a plug harvested from the knee. The ankle joint wasloaded during a single-leg stance phase of gait. Tibiotalar contactpressure, frictional stress, equivalent stress (von Mises values),and deformation were analyzed.Results: In both osteochondral grafting simulations, tibiotalarcontact pressure, frictional stress, equivalent stress (von Misesvalues) on both tibial and talar cartilage surfaces were restored tonear-normal values.Conclusion: Cartilage thickness mismatch does not significantlychange the tibiotalar contact biomechanics, when the graft isinserted flush with the talar cartilage surface.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Looze CA, Capo J, Ryan MK, Begly JP, Chapman C, Swanson D, et al. Evaluation and management of osteochondral lesions of the talus. Cartilage 2017;8:19-30.
  • 2. van Bergen CJ, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GM, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus: Outcomes at eight to twenty years of follow-up. J Bone Joint Surg [Am] 2013;95:519-25.
  • 3. Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: Is there a critical defect size for poor outcome? Am J Sports Med 2009;37:1974-80.
  • 4. Savage-Elliott I, Ross KA, Smyth NA, Murawski CD, Kennedy JG. Osteochondral lesions of the talus: A current concepts review and evidence-based treatment paradigm. Foot Ankle Spec 2014;7:414-22.
  • 5. Shimozono Y, Hurley ET, Myerson CL, Kennedy JG. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 2018;26:3055-62.
  • 6. Korucu İH, Kekeç AF, Arslan A, Oltulu P, Korucu EN, Özer M. Regenerative effects of hyperbaric oxygen therapy and plateletrich plasma on the osteochondral defects of rats. Jt Dis Relat Surg 2020;31:260-6.
  • 7. Ye Y, You W, Zhu W, Cui J, Chen K, Wang D. The applications of finite element analysis in proximal humeral fractures. Comput Math Methods Med 2017;2017:4879836.
  • 8. Hassan CR, Qin YX, Komatsu DE, Uddin SMZ. Utilization of finite element analysis for articular cartilage tissue engineering. Materials (Basel) 2019;12:3331.
  • 9. Latt LD, Glisson RR, Montijo HE, Usuelli FG, Easley ME. Effect of graft height mismatch on contact pressures with osteochondral grafting of the talus. Am J Sports Med 2011;39:2662-9.
  • 10. Fansa AM, Murawski CD, Imhauser CW, Nguyen JT, Kennedy JG. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint. Am J Sports Med 2011;39:2457-65.
  • 11. Kock NB, Smolders JM, van Susante JL, Buma P, van Kampen A, Verdonschot N. A cadaveric analysis of contact stress restoration after osteochondral transplantation of a cylindrical cartilage defect. Knee Surg Sports Traumatol Arthrosc 2008;16:461-8.
  • 12. Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 2001;29:201-6.
  • 13. Buettner O, Leumann A, Lehner R, Dell-Kuster S, Rosenthal R, Mueller-Gerbl M, et al. Histomorphometric, CT arthrographic, and biomechanical mapping of the human ankle. Foot Ankle Int 2013;34:1025-34.
  • 14. Millington SA, Grabner M, Wozelka R, Anderson DD, Hurwitz SR, Crandall JR. Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system. Osteoarthritis Cartilage 2007;15:205-11.
  • 15. Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 1999;58:27-34.
  • 16. Urita A, Cvetanovich GL, Madden BT, Verma NN, Inoue N, Cole BJ, et al. Topographic matching of osteochondral allograft transplantation using lateral femoral condyle for the treatment of medial femoral condyle lesions: A computer-simulated model study. Arthroscopy 2018;34:3033-42.
  • 17. Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM. Osteochondral lesions of the talus: Localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int 2007;28:154-61.
  • 18. Sugimoto K, Takakura Y, Tohno Y, Kumai T, Kawate K, Kadono K. Cartilage thickness of the talar dome. Arthroscopy 2005;21:401-4.
  • 19. Wan L, de Asla RJ, Rubash HE, Li G. Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions. Osteoarthritis Cartilage 2006;14:1294-301.
  • 20. Maier J, Black M, Bonaretti S, Bier B, Eskofier B, Choi JH, et al. Comparison of different approaches for measuring tibial cartilage thickness. J Integr Bioinform 2017;14:20170015.
  • 21. Ding M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F. Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg [Br] 1997;79:995-1002.
  • 22. Terukina M, Fujioka H, Yoshiya S, Kurosaka M, Makino T, Matsui N, et al. Analysis of the thickness and curvature of articular cartilage of the femoral condyle. Arthroscopy 2003;19:969-73.
  • 23. Wang Q, Whittle M, Cunningham J, Kenwright J. Fibula and its ligaments in load transmission and ankle joint stability. Clin Orthop Relat Res 1996;(330):261-70.
  • 24. Hayden LR, Escaro S, Wilhite DR, Hanson RR, Jackson RL. A comparison of friction measurements of intact articular cartilage in contact with cartilage, glass, and metal. JBBBE 2019;41:23-35.
  • 25. Eberle S, Gerber C, von Oldenburg G, Högel F, Augat P. A biomechanical evaluation of orthopaedic implants for hip fractures by finite element analysis and in-vitro tests. Proc Inst Mech Eng H 2010;224:1141-52.
  • 26. Dong XN, Acuna RL, Luo Q, Wang X. Orientation dependence of progressive post-yield behavior of human cortical bone in compression. J Biomech 2012;45:2829-34.
  • 27. Wang X, Nyman JS, Dong X, Leng H, Reyes M, editors. Fundamental biomechanics in bone tissue engineering - synthesis lectures on tissue engineering. 1st ed. Williston: Morgan & Claypool; 2010.
  • 28. Kim SH, Chang SH, Jung HJ. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues. Composite Structures 2010;92:2109-18.
  • 29. Klekiel T. Będziński R. Finite element analysis of large deformation of articular cartilage in upper ankle joint of occupant in military vehicles during explosion. Arch Metall Mater 2015;60:2115-21.
  • 30 Alonso-Rasgado T, Jimenez-Cruz D, Karski M. 3-D computer modelling of malunited posterior malleolar fractures: Effect of fragment size and offset on ankle stability, contact pressure and pattern. J Foot Ankle Res 2017;10:13.
  • 31. Zhu ZJ, Zhu Y, Liu JF, Wang YP, Chen G, Xu XY. Posterolateral ankle ligament injuries affect ankle stability: a finite element study. BMC Musculoskelet Disord 2016;17:96.
  • 32. Novitskaya E, Zin C, Chang N, Cory E, Chen P, D'Lima D, et al. Creep of trabecular bone from the human proximal tibia. Mater Sci Eng C Mater Biol Appl 2014;40:219-27.
  • 33. Viceconti M, Olsen S, Nolte LP, Burton K. Extracting clinically relevant data from finite element simulations. Clin Biomech (Bristol, Avon) 2005;20:451-4.
  • 34. Li J, Wei Y, Wei M. Finite element analysis of the effect of talar osteochondral defects of different depths on ankle joint stability. Med Sci Monit 2020;26:e921823.
  • 35. Koh JL, Kowalski A, Lautenschlager E. The effect of angled osteochondral grafting on contact pressure: a biomechanical study. Am J Sports Med 2006;34:116-9.
  • 36. Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 2000;18:739-48.
  • 37. Henak CR, Ross KA, Bonnevie ED, Fortier LA, Cohen I, Kennedy JG, et al. Human talar and femoral cartilage have distinct mechanical properties near the articular surface. J Biomech 2016;49:3320-7.
  • 38. Kreuz PC, Steinwachs M, Erggelet C, Lahm A, Henle P, Niemeyer P. Mosaicplasty with autogenous talar autograft for osteochondral lesions of the talus after failed primary arthroscopic management: a prospective study with a 4-year follow-up. Am J Sports Med 2006;34:55-63.
  • 39. Georgiannos D, Bisbinas I, Badekas A. Osteochondral transplantation of autologous graft for the treatment of osteochondral lesions of talus: 5- to 7-year follow-up. Knee Surg Sports Traumatol Arthrosc 2016;24:3722-9.
  • 40. Cheung JT, Zhang M. A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil 2005;86:353-8.
APA Kılıçaslan Ö, Levent A, Celik H, Tokgöz M, Kose O, Rennie A (2021). Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. , 355 - 362. 10.52312/jdrs.2021.41
Chicago Kılıçaslan Ömer faruk,Levent Ali,Celik H. Kursat,Tokgöz Mehmet Ali,Kose Ozkan,Rennie Allan Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. (2021): 355 - 362. 10.52312/jdrs.2021.41
MLA Kılıçaslan Ömer faruk,Levent Ali,Celik H. Kursat,Tokgöz Mehmet Ali,Kose Ozkan,Rennie Allan Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. , 2021, ss.355 - 362. 10.52312/jdrs.2021.41
AMA Kılıçaslan Ö,Levent A,Celik H,Tokgöz M,Kose O,Rennie A Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. . 2021; 355 - 362. 10.52312/jdrs.2021.41
Vancouver Kılıçaslan Ö,Levent A,Celik H,Tokgöz M,Kose O,Rennie A Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. . 2021; 355 - 362. 10.52312/jdrs.2021.41
IEEE Kılıçaslan Ö,Levent A,Celik H,Tokgöz M,Kose O,Rennie A "Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis." , ss.355 - 362, 2021. 10.52312/jdrs.2021.41
ISNAD Kılıçaslan, Ömer faruk vd. "Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis". (2021), 355-362. https://doi.org/10.52312/jdrs.2021.41
APA Kılıçaslan Ö, Levent A, Celik H, Tokgöz M, Kose O, Rennie A (2021). Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. Joint diseases and related surgery, 32(2), 355 - 362. 10.52312/jdrs.2021.41
Chicago Kılıçaslan Ömer faruk,Levent Ali,Celik H. Kursat,Tokgöz Mehmet Ali,Kose Ozkan,Rennie Allan Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. Joint diseases and related surgery 32, no.2 (2021): 355 - 362. 10.52312/jdrs.2021.41
MLA Kılıçaslan Ömer faruk,Levent Ali,Celik H. Kursat,Tokgöz Mehmet Ali,Kose Ozkan,Rennie Allan Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. Joint diseases and related surgery, vol.32, no.2, 2021, ss.355 - 362. 10.52312/jdrs.2021.41
AMA Kılıçaslan Ö,Levent A,Celik H,Tokgöz M,Kose O,Rennie A Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. Joint diseases and related surgery. 2021; 32(2): 355 - 362. 10.52312/jdrs.2021.41
Vancouver Kılıçaslan Ö,Levent A,Celik H,Tokgöz M,Kose O,Rennie A Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis. Joint diseases and related surgery. 2021; 32(2): 355 - 362. 10.52312/jdrs.2021.41
IEEE Kılıçaslan Ö,Levent A,Celik H,Tokgöz M,Kose O,Rennie A "Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis." Joint diseases and related surgery, 32, ss.355 - 362, 2021. 10.52312/jdrs.2021.41
ISNAD Kılıçaslan, Ömer faruk vd. "Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: A finite element analysis". Joint diseases and related surgery 32/2 (2021), 355-362. https://doi.org/10.52312/jdrs.2021.41