Yıl: 2021 Cilt: 26 Sayı: 1 Sayfa Aralığı: 203 - 214 Metin Dili: İngilizce DOI: 10.17482/uumfd.779265 İndeks Tarihi: 29-07-2022

CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE

Öz:
Two-dimensional (2D) materials such as transition metal dichalcogenides (TMDs) are prominentcandidates to be utilized in integrated circuits. However, growing uniform and large-area 2D materials,specifically monolayers, that can be used in electronic component production is still one of the mainchallenges for these 2D materials to be incorporated in integrated circuits or other active deviceapplications. The aim of this study is to demonstrate a practical and reliable MATLAB computationalmethod, which calculates the ratio of the chemical vapor deposited monolayers to the whole substratesurface and the maximum area of the deposited flakes. In this study, we used the K-means clustering methodto calculate surface coverage where we obtained accuracy of ~96% for the simple test images (single starand hexagonal shapes). For the multi-numbered and distributed shapes example, we achieved higheraccuracy of ~98%. We also realized calculation of each flake area with ~99% accuracy indicating the flakewith the maximum area. The practical calculation of the surface coverage ratio and flake size will allow foreasy identification of the effects of the process parameters during novel material growth, which will paveway for future optoelectronic and electronic devices.
Anahtar Kelime: Clustering algorithms Transition metal dichalcogenides Two-dimensional materials Image processing

Kimyasal Buhar Biriktirme Tekniği ile Büyütülmüş Tek Katmanlı Yapıların Kaplama Oranı ve Yaprak Büyüklüğünün Hesaplanması

Öz:
Geçiş metal dikalkojenitleri (GMK'lar) gibi iki boyutlu (2B) malzemeler, entegre devrelerde kullanılmak için büyük bir potansiyele sahiptir. Bununla birlikte, elektronik bileşen üretiminde kullanılabilen tekdüze ve geniş alanlı 2B malzemelerin büyütülmesi, özellikle tek katlı yapıların, entegre devrelere veya diğer aktif cihaz uygulamalarına dahil edilmesi için hala ana zorluklardan biridir. Bu çalışmanın amacı, tek tabakalı yapılarla kaplanmış yüzeyin tüm alttaş yüzeyine oranını ve büyütülen pulların maksimum alanını hesaplayan pratik ve güvenilir bir MATLAB hesaplama yöntemini göstermektir. Bu çalışmada, yüzey kaplama oranını hesaplamak için K-ortalamalı kümeleme yöntemi kullanılmıştır, çalışma sonucunda basit test görüntüleri (tek yıldız ve tek altıgen şekilleri) için %~96 doğruluk oranı elde edilmiştir. Bununla birlikte içinde birden fazla şekil içeren test görüntülerinde %~98 doğruluk oranı elde edilmiştir. Ayrıca üretilen pulların alanının %~99 doğruluk oranıyla hesaplanması ve maksimum alanda büyütülen pulun bulunması gösterilmiştir. Yüzeyin kaplama oranı ve pul boyutu bilgilerinin pratik bir şekilde hesaplanması, gelecekteki optoelektronik ve elektronik uygulamalar için yeni malzeme büyütülmesi sırasında deney parametrelerinin yüzey kaplamasına etkisinin kolayca tanımlanmasını sağlayacaktır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Avcı, C. and Akbaş, A. (2015) Sleep apnea classification based on respiration signals by using ensemble methods. Bio-Medical Materials and Engineering, 26, S1703-S1710. doi:10.3233/BME-151470
  • 2. Avouris, P. and Xia, F. (2012) Graphene applications in electronics and photonics. Mrs Bulletin, 37. doi:10.1557/mrs.2012.206
  • 3. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C. N. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano letters, 8(3), 902- 907. doi:10.1021/nl0731872
  • 4. Bay, M. (2019) Two-dimensional transition metal dichalcogenide (TMDC) alloys and devices. (tez no: 582257), Eskişehir Technical University.
  • 5. Bi, Z. M. and Wang, L. (2010) Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 26(5), 403-413. doi:https://doi.org/10.1016/j.rcim.2010.03.003
  • 6. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H. L. (2008) Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9), 351-355. doi:https://doi.org/10.1016/j.ssc.2008.02.024
  • 7. Dawood, A. S., Visser, S. J. and Williams, J. A. (2002) Reconfigurable FPGAS for real time image processing in space. Paper presented at the 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628). doi: 10.1109/ICDSP.2002.1028222
  • 8. Demirkaya, O., Asyali, M. H. and Sahoo, P. K. (2008) Image processing with MATLAB: applications in medicine and biology: CRC Press.
  • 9. Dhanachandra, N., Manglem, K. and Chanu, Y. J. (2015) Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Computer Science, 54, 764-771. doi:https://doi.org/10.1016/j.procs.2015.06.090
  • 10. E. Rehkugler, G. and A. Throopmann, J. (1989) Image Processing Algorithm for Apple Defect Detection. Transactions of the ASAE, 32(1), 267-0272. doi:https://doi.org/10.13031/2013.30994
  • 11. Ercisli, S., Sayinci, B., Kara, M., Yildiz, C. and Ozturk, I. (2012) Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Scientia Horticulturae, 133, 47-55. doi:https://doi.org/10.1016/j.scienta.2011.10.014
  • 12. Ibraheem, N. A., Hasan, M. M., Khan, R. Z. and Mishra, P. K. (2012) Understanding color models: a review. ARPN Journal of science and technology, 2(3), 265-275.
  • 13. Jessen, B. S., Whelan, P. R., Mackenzie, D. M. A., Luo, B., Thomsen, J. D., Gammelgaard, L., Booth, T. J. and Bøggild, P. (2018) Quantitative optical mapping of two-dimensional materials. Scientific reports, 8(1), 6381. doi:10.1038/s41598-018-23922-1
  • 14. Kanan, C. and Cottrell, G. (2012) Color-to-Grayscale: Does the Method Matter in Image Recognition? PloS one, 7, e29740. doi:10.1371/journal.pone.0029740
  • 15. Keyes, R. W. (2005) Physical limits of silicon transistors and circuits. Reports on Progress in Physics, 68(12), 2701-2746. doi:10.1088/0034-4885/68/12/r01
  • 16. Khojastehnazhand, M., Omid, M. and Tabatabaeefar, A. (2009) Determination of orange volume and surface area using image processing technique. International Agrophysics, 23(3), 237-242.
  • 17. Koc, A. B. (2007) Determination of watermelon volume using ellipsoid approximation and image processing. Postharvest Biology and Technology, 45(3), 366-371. doi:https://doi.org/10.1016/j.postharvbio.2007.03.010
  • 18. Kuehni, R. G. (2001) Color space and its divisions. Color Research & Application: Endorsed by Inter‐Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, 26(3), 209-222. https://doi.org/10.1002/col.1018
  • 19. Lino, A. C., Sanches, J. and Fabbro, I. (2008) Image processing techniques for lemons and tomatoes classification. Bragantia, 67, 785-789. doi:10.1590/S0006-87052008000300029
  • 20. Liu, F. and Yan, W. Q. (2014) Visual cryptography for image processing and security. Springer International publishing.
  • 21. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. and Kis, A. (2017) 2D transition metal dichalcogenides. Nature Reviews Materials, 2. doi:10.1038/natrevmats.2017.33
  • 22. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A. (2004) Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. doi:10.1126/science.1102896
  • 23. Omid, M., Khojastehnazhand, M. and Tabatabaeefar, A. (2010) Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering, 100(2), 315- 321. doi:https://doi.org/10.1016/j.jfoodeng.2010.04.015
  • 24. Öper, M., Shehu, Y. and Perkgöz, N. K. (2020) Temperature-dependent Raman modes of MoS2/MoSe2 van der Waals heterostructures. Semiconductor Science and Technology, 35(11), 115020. doi:10.1088/1361-6641/abb526
  • 25. Ovid’Ko, I. (2013) Mechanical properties of graphene. Rev. Adv. Mater. Sci, 34(1), 1-11.
  • 26. Özden, A., Ay, F., Sevik, C. and Perkgöz, N. K. (2017) CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio. Japanese Journal of Applied Physics, 56(6S1), 06GG05. doi:10.7567/jjap.56.06gg05
  • 27. Ozden, A., Sar, H., Yeltik, A., Madenoglu, B., Sevik, C., Ay, F. and Perkgoz, N. K. (2016) CVD grown 2D MoS2 layers: A photoluminescence and fluorescence lifetime imaging study. Physica Status Solidi-Rapid Research Letters, 10(11), 792-796. doi:10.1002/pssr.201600204
  • 28. Ozkucuk, G. U., Odaci, C., Sahin, E., Ay, F. and Perkgoz, N. K. (2020) Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Materials Science in Semiconductor Processing, 105. doi:10.1016/j.mssp.2019.104679
  • 29. Palacios, T., Hsu, A. and Wang, H. (2010) Applications of graphene devices in RF communications. IEEE Communications Magazine, 48(6), 122-128. doi:10.1109/MCOM.2010.5473873
  • 30. Perkgoz, N. K. and Bay, M. (2016) Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition. Nano-Micro Letters, 8(1), 70-79. doi:10.1007/s40820-015-0064-2
  • 31. Phillips, P. J., McCabe, R. M. and Chellappa, R. (1998) Biometric image processing and recognition. Paper presented at the 9th European Signal Processing Conference (EUSIPCO 1998).
  • 32. Pop, E., Varshney, V. and Roy, A. K. (2012) Thermal properties of graphene: Fundamentals and applications. Mrs Bulletin, 37(12), 1273-1281. doi:10.1557/mrs.2012.203
  • 33. Pozzo, R. L., Baltanás, M. A. and Cassano, A. E. (1999) Towards a precise assessment of the performance of supported photocatalysts for water detoxification processes. Catalysis Today, 54(1), 143-157. doi: https://doi.org/10.1016/S0920-5861(99)00176-5
  • 34. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011) Single-layer MoS2 transistors. Nature nanotechnology, 6(3), 147-150. doi:10.1038/nnano.2010.279
  • 35. Reddy, D., Register, L. F., Carpenter, G. D. and Banerjee, S. K. (2011) Graphene field-effect transistors. Journal of Physics D: Applied Physics, 44(31), 313001. doi:10.1088/0022- 3727/44/31/313001
  • 36. Sar, H., Ozden, A., Demiroglu, I., Sevik, C., Perkgoz, N. K. and Ay, F. (2019) Long-Term Stability Control of CVD-Grown Monolayer MoS2. Physica Status Solidi-Rapid Research Letters, 13(7). doi:10.1002/pssr.201800687
  • 37. Şar, H., Özden, A., Yorulmaz, B., Sevik, C., Kosku Perkgoz, N. and Ay, F. (2018) A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers. Journal of Materials Science: Materials in Electronics, 29(10), 8785-8792. doi:10.1007/s10854-018-8895-5
  • 38. Schwierz, F., Granzner, R. and Pezoldt, J. (2015) Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 7. doi:10.1039/C5NR01052G
  • 39. Wagstaff, K., Cardie, C., Rogers, S. and Schrödl, S. (2001) Constrained k-means clustering with background knowledge. Paper presented at the Icml.
  • 40. Yorulmaz, B., Özden, A., Şar, H., Ay, F., Sevik, C. and Perkgöz, N. K. (2019) CVD growth of monolayer WS2 through controlled seed formation and vapor density. Materials Science in Semiconductor Processing, 93, 158-163. doi: https://doi.org/10.1016/j.mssp.2018.12.035
  • 41. Yorulmaz, U., Ozden, A., Perkgoz, N. K., Ay, F. and Sevik, C. (2016) Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology, 27(33). doi:10.1088/0957-4484/27/33/335702
  • 42. Zhang, H., Cheng, H.-M. and Ye, P. (2018) 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chemical Society Reviews, 47(16), 6009-6012. doi:10.1039/C8CS90084A
APA ASLANCI F, Can F, Oper M, KOSKU PERKGOZ N (2021). CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. , 203 - 214. 10.17482/uumfd.779265
Chicago ASLANCI Fırat,Can Fatma,Oper Merve,KOSKU PERKGOZ NIHAN CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. (2021): 203 - 214. 10.17482/uumfd.779265
MLA ASLANCI Fırat,Can Fatma,Oper Merve,KOSKU PERKGOZ NIHAN CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. , 2021, ss.203 - 214. 10.17482/uumfd.779265
AMA ASLANCI F,Can F,Oper M,KOSKU PERKGOZ N CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. . 2021; 203 - 214. 10.17482/uumfd.779265
Vancouver ASLANCI F,Can F,Oper M,KOSKU PERKGOZ N CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. . 2021; 203 - 214. 10.17482/uumfd.779265
IEEE ASLANCI F,Can F,Oper M,KOSKU PERKGOZ N "CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE." , ss.203 - 214, 2021. 10.17482/uumfd.779265
ISNAD ASLANCI, Fırat vd. "CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE". (2021), 203-214. https://doi.org/10.17482/uumfd.779265
APA ASLANCI F, Can F, Oper M, KOSKU PERKGOZ N (2021). CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 203 - 214. 10.17482/uumfd.779265
Chicago ASLANCI Fırat,Can Fatma,Oper Merve,KOSKU PERKGOZ NIHAN CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no.1 (2021): 203 - 214. 10.17482/uumfd.779265
MLA ASLANCI Fırat,Can Fatma,Oper Merve,KOSKU PERKGOZ NIHAN CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.26, no.1, 2021, ss.203 - 214. 10.17482/uumfd.779265
AMA ASLANCI F,Can F,Oper M,KOSKU PERKGOZ N CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2021; 26(1): 203 - 214. 10.17482/uumfd.779265
Vancouver ASLANCI F,Can F,Oper M,KOSKU PERKGOZ N CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2021; 26(1): 203 - 214. 10.17482/uumfd.779265
IEEE ASLANCI F,Can F,Oper M,KOSKU PERKGOZ N "CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26, ss.203 - 214, 2021. 10.17482/uumfd.779265
ISNAD ASLANCI, Fırat vd. "CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/1 (2021), 203-214. https://doi.org/10.17482/uumfd.779265