Yıl: 2021 Cilt: 6 Sayı: 2 Sayfa Aralığı: 240 - 244 Metin Dili: İngilizce DOI: 10.35229/jaes.881144 İndeks Tarihi: 29-07-2022

Antibacterial Effects of Boric Acid Against Aquatic Pathogens

Öz:
Boron is a bioactive trace element generally found in rock, soil, water and air. It is an essential micronutrient for plants besides having beneficial effects on biological functions of human and animal health. Boric acid has antibacterial properties. Thus, the aim of this study was to evaluate the possible bactericidal and bacteriostatic effects of boric acid on the aquatic pathogens: Aeromonas veronii, Photobacterium damselae subsp. damselae, Vibrio anguillarum, Vibrio vulnificus, Vibrio harveyi, Vibrio rotiferianus, Vibrio tubiashii, Vibrio parahaemolyticus, Vibrio furnissii, and Vibrio fluvialis. The inhibitory properties of boric acid were detected by agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The results showed that Photobacterium damselae subsp. damselae and Vibrio species were resistant to different concentrations of boric acid. However, boric acid showed an inhibitory effect against Aeromonas veronii at concentrations of 3.09 and 1.54 mg/ml and zone diameters on the agar were measured as 19.4 ± 0.5, 15.92 ± 0.6 mm, respectively. The MIC and MBC of boric acid for Aeromonas veronii were found to be effective at a concentration of 1.54 mg/ml. These results suggested that boric acid might serve as a potential antimicrobial agent for Aeromonas veronii in aquaculture.
Anahtar Kelime: MIC and MBC antibacterial aquatic pathogen boric acid

Borik Asitin Sucul Patojenler Üzerine Olan Antibakteriyel Etkileri

Öz:
Bor, genellikle kaya, toprak, su ve havada bulunan biyoaktif bir eser elementtir. Borik asidin insan ve hayvan sağlığının biyolojik fonksiyonları üzerinde faydalı etkileri bulunmaktadır. Bitkiler için de vazgeçilmez bir mikro besin olan borik asit antibakteriyel özelliktedir. Bu çalışmanın amacı borik asidin sucul patojenlerden Aeromonas veronii, Photobacterium damselae subsp. damselae Vibrio anguillarum, Vibrio vulnificus, Vibrio harveyi, Vibrio rotiferianus, Vibrio tubiashii, Vibrio parahaemolyticus, Vibrio furnissii ve Vibrio fluvialis’e karşı bakterisidal ve bakteriostatik etkilerini incelemektir. Bu çalışmada, borik asidin inhibisyon özellikleri, agar kuyusu difüzyonu, minimum inhibisyon konsantrasyonu (MİK) ve minimum bakterisidal konsantrasyonu (MBK) yöntemleri kullanılarak tespit edilmiştir. Sonuçlar, Photobacterium damselae subsp. damselae ve Vibrio türlerinin farklı konsantrasyonlardaki borik aside karşı dirençli olduğunu göstermiştir. Bununla birlikte, borik asit 3,09 ve 1,54 mg/ml konsantrasyonlarında Aeromonas veronii’ ye karşı inhibitör etki göstermiştir ve agarda sırasıyla 19,4 ± 0,5 mm ve 15,92 ± 0,6 mm halka çapları ölçülmüştür. Aeromonas veronii için MİK ve MBK değerleri 1,54 mg/ml olarak belirlenmiştir. Bu sonuçlar, borik asidin, su ürünleri yetiştiriciliğinde Aeromonas veronii için potansiyel bir antimikrobiyal ajan görevi görebileceğini ileri sürmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
1
  • Akkan, T. & Çolaker, F. (2020). Determining the bacteriological pollution level of Gelevera Creek, Giresun. J. Anatolian Env. and Anim. Sciences, 5(4), 691-695. DOI: 10.35229/jaes.818132
  • Akkan, T. & Topkaraoğlu, T. (2019). Determination of antibiotic resistance levels of Escherichia coli isolates obtained from freshwater sources: Batlama Creek. Journal of Anatolian Environmental and Animal Sciences, 4(3), 539- 544. DOI: 10.35229/jaes.650210
  • Balta, F. & Dengiz Balta, Z. (2016). Vibrio infection and treatment on the juvenile rainbow trout (Oncorhynchus mykiss) transferred seawater. Journal of Anatolian Environmental and Animal Sciences, 1(1), 14-20.
  • Balta, F. Dengiz Balta, Z. Özgümüş, O.B. & Çağırgan, H. (2016). The antimicrobial resistance and investigation of Yersinia ruckeri from rainbow trout (Oncorhynchus mykiss) farms in the Eastern Black Sea Region. Journal of Anatolian Environmental and Animal Sciences, 1(3), 72-76.
  • Balta, F. & Dengiz Balta, Z. (2017). Serotyping, genetic characterization and antimicrobial susceptibility determination of Vibrio anguillarum strains isolated from farmed rainbow trout (Oncorhynchus mykiss) in the eastern Black Sea. Ankara Üniv Vet Fak Derg, 64, 321-328.
  • Balta, F. & Dengiz Balta, Z. (2019). The isolation of Lactococcus garvieae from eyes of diseased rainbow trout (Oncorhynchus mykiss) with exopthalmia. Journal of Anatolian Environmental and Animal Sciences, 4(1), 27-33. DOI: 10.35229/jaes.527258
  • Balta, F. (2020). Determination of the antimicrobial susceptibilities of Aeromonas spp. isolated from rainbow trout farms on the Fırtına river. Journal of Anatolian Environmental and Animal Sciences, 5(3), 397-407. DOI: 10.35229/jaes.785447
  • Cui, H., Hao, S. & Arous, E. (2007). A distinct cause of necrotizing fasciitis: Aeromonas veronii biovar sobria. Surgical Infections, 8, 523-528. DOI: 10.1089/sur.2006.046
  • Dinca, L. & Scorei, R. (2013). Boron in Human Nutrition and its Regulations Use. Journal of Nutritional Therapeutics, 2, 22-29. DOI: 10.6000/1929- 5634.2013.02.01.3
  • Done, H.Y., Venkatesan, A.K. & Halden, R.U. (2015). Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? American Association of Pharmaceutical Scientists Journal, 17, 513-524. DOI: 10.1208/s12248-015-9722-z
  • Estrela, C., Rodrigues de Araújo Estrela, C., Bammann, L.L. & Pecora, J.D. (2001). Two methods to evaluate the antimicrobial action of calcium hydroxide paste. Journal of Endodontics, 27(12), 720-723. DOI: 10.1097/00004770- 200112000-00002
  • Goldbach, H.E., Huang, L. & Wimmer, M.A. (2007). Boron functions in plants and animals: recent advances in boron research and open questions. In: Xu F, Goldbach H, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi LF. (Ed). 3-25p Advances in plant and animal boron nutrition. Dordrecht: Springer.
  • Hatha, M., Vivekanandhan, A.A, Joice, G.J. & Christol. (2005). Antibiotic resistance pattern of motile aeromonads from farm raised freshwater fish. International Journal of Food Microbiology, 98(2), 131-134. DOI: 10.1016/j.ijfoodmicro.2004.05.017
  • Hossain, S., Dahanayake, P.S., De Silva, B.C.J., Wickramanayake, M.V.K.S., Wimalasena, S.H.M.P. & Heo, G.J. (2019). Multi-drug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Letters in Applied Microbiology, 68, 370-377. DOI: 10.1111/lam.13138
  • Houlsby, R.D., Ghajar, M. & Chavez, G.O. (1986). Antimicrobial activity of borate-buffered solutions. Antimicrobial Agents and Chemotherapy, 29, 803-806. DOI: 10.1128/aac.29.5.803
  • Janda, J.M. & Abbott S.L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23, 35- 73. DOI: 10.1128/CMR.00039-09
  • Morandi, S., Morandi, F., Caselli, E., Shoichet, B.K. & Prati, F. (2008). Structure-based optimization of cephalothin-analogue boronic acids as betalactamase inhibitors. Bioorganic & Medicinal Chemistry, 16, 1195-1205. DOI: 10.1016/j.bmc.2007.10.075
  • Nielsen, F.H. (1997). Boron in human and animal nutrition. Plant and Soil, 193, 199-208.
  • Öz, M., Inanan, B.E. & Dikel, S. (2018). Effect of boric acid in rainbow trout (Oncorhynchus mykiss) growth performance. Journal of Applied Animal Research, 46(1), 990-993. DOI: 10.1080/09712119.2018.1450258
  • Perez, C., Paul, M. & Bazerque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biologiae Et Medicinae Experimentalis, 15, 113- 115.
  • Reichman, O., Akins, R. & Sobel, J.D. (2009). Boric acid addition to suppressive antimicrobial therapy for recurrent bacterial vaginosis. Sexually Transmitted Diseases, 36(11), 732-734. DOI: 10.1097/OLQ.0b013e3181b08456
  • Resende, J.A., Silva, V.L., Fontes, C.O., Souza-Filho, J.A., Rocha de Oliveira, T.L., Coelho, C.M., César, D.E., & Diniz, C.G. (2012). Multidrugresistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environments, 27, 449-455. DOI: 10.1264/jsme2.me12049
  • Russel, J.B. & Diez-Gonzalez, F. (1998). The effects of fermentation acids on bacterial growth. Advances in Bacterial Physiology, 39, 205-234. DOI: 10.1016/s0065-2911(08)60017-x
  • Samman, S., Naghii, M.R., Lyons Wall, P.M. & Verus, A.P. (1998). The nutritional and metabolic effects of boron in humans and animals. Biological Trace Element Research, 66, 227-235. DOI: 10.1007/BF02783140
  • Sayin, Z., Ucan, U.S. & Sakmanoglu, A. (2016). Antibacterial and Antibiofilm Effects of Boron on Different Bacteria. Biological Trace Element Research, 173, 241-246. DOI: 10.1007/s12011- 016-0637-z
  • Smyrli, M., Prapas, A., Rigos, G., Kokkari, C., Pavlidis, M. & Katharios, P. (2017). Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathology, 52, 68-81. DOI: 10.3147/JSFP.52.68
  • Tekedar, H.C., Arick, M.A., Hsu, C.Y., Thrash, A., Blom, J., Lawrence, M. L. & Abdelhamed, H. (2020). Identification of Antimicrobial Resistance Determinants in Aeromonas veronii Strain MS17-88 Recovered From Channel Catfish (Ictalurus punctatus). Frontiers in Cellular and Infection Microbiology, 10, 348. DOI: 10.3389/fcimb.2020.00348
  • Topal, A., Oruç, E., Altun, S., Ceyhun, S.B. & Atamanalp, M. (2016). The effects of acute boric acid treatment on gill, kidney and muscle tissues in juvenile rainbow trout. Journal of Applied Animal Research, 44(1), 297-302. DOI: 10.1080/09712119.2015.1031784
  • Uzun, E. & Ogut, H. (2015). The Isolation Frequency of Bacterial Pathogens from Sea Bass (Dicentrarchus labrax) in the Southeastern Black Sea. Aquaculture. 437, 30-37. DOI: 10.1016/j.aquaculture.2014.11.017
  • Uzun-Yaylacı, E. (2019). Developing a differentiation technique for the pathogenic bacteria causing disease in sea bass (Dicentrarchus labrax) by using artifıcial neural networks. Doctoral thesis, Karadeniz Technical University, The Graduate School of Natural and Applied Sciences, Trabzon, Turkey, 49-50p.
  • Watanabe, S., Fujita, T. & Sakamoto, M. (1988). Antimicrobial properties of boric acid esters of alcohols. Journal of the American Oil Chemists' Society, 65, 1479-1482. DOI: 10.1007/BF02898312
  • Yang, F., Zhu, M., Zhang, J. & Zhou, H. (2018). Synthesis of biologically active boron-containing compounds. Medicinal Chemistry Communications, 9, 201-211. DOI: 10.1039/c7md00552k
  • Yılmaz, M.T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences, 42,1423-1429. DOI: 10.3906/sag-1205-83
APA YAYLACI E (2021). Antibacterial Effects of Boric Acid Against Aquatic Pathogens. , 240 - 244. 10.35229/jaes.881144
Chicago YAYLACI Ecren UZUN Antibacterial Effects of Boric Acid Against Aquatic Pathogens. (2021): 240 - 244. 10.35229/jaes.881144
MLA YAYLACI Ecren UZUN Antibacterial Effects of Boric Acid Against Aquatic Pathogens. , 2021, ss.240 - 244. 10.35229/jaes.881144
AMA YAYLACI E Antibacterial Effects of Boric Acid Against Aquatic Pathogens. . 2021; 240 - 244. 10.35229/jaes.881144
Vancouver YAYLACI E Antibacterial Effects of Boric Acid Against Aquatic Pathogens. . 2021; 240 - 244. 10.35229/jaes.881144
IEEE YAYLACI E "Antibacterial Effects of Boric Acid Against Aquatic Pathogens." , ss.240 - 244, 2021. 10.35229/jaes.881144
ISNAD YAYLACI, Ecren UZUN. "Antibacterial Effects of Boric Acid Against Aquatic Pathogens". (2021), 240-244. https://doi.org/10.35229/jaes.881144
APA YAYLACI E (2021). Antibacterial Effects of Boric Acid Against Aquatic Pathogens. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES, 6(2), 240 - 244. 10.35229/jaes.881144
Chicago YAYLACI Ecren UZUN Antibacterial Effects of Boric Acid Against Aquatic Pathogens. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES 6, no.2 (2021): 240 - 244. 10.35229/jaes.881144
MLA YAYLACI Ecren UZUN Antibacterial Effects of Boric Acid Against Aquatic Pathogens. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES, vol.6, no.2, 2021, ss.240 - 244. 10.35229/jaes.881144
AMA YAYLACI E Antibacterial Effects of Boric Acid Against Aquatic Pathogens. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES. 2021; 6(2): 240 - 244. 10.35229/jaes.881144
Vancouver YAYLACI E Antibacterial Effects of Boric Acid Against Aquatic Pathogens. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES. 2021; 6(2): 240 - 244. 10.35229/jaes.881144
IEEE YAYLACI E "Antibacterial Effects of Boric Acid Against Aquatic Pathogens." JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES, 6, ss.240 - 244, 2021. 10.35229/jaes.881144
ISNAD YAYLACI, Ecren UZUN. "Antibacterial Effects of Boric Acid Against Aquatic Pathogens". JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES 6/2 (2021), 240-244. https://doi.org/10.35229/jaes.881144