Yıl: 2021 Cilt: 37 Sayı: 1 Sayfa Aralığı: 99 - 109 Metin Dili: İngilizce İndeks Tarihi: 17-10-2021

Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors

Öz:
In this study, micron-sized Field Effect Transistor (FET) based sensors were produced using Polyaniline (PANI) channels. Pristine and nanostructured-ZnO added PANI was synthesized by free radical chemical oxidative polymerization method. FET production was carried out by producing PANI and PANI/nanostructured-ZnO composite channels on Si/SiO2 (285 nm) substrate by the optical lithography method. The electrical responses of the produced sensors against hydrogen (H2) gas were determined by measuring the source-drain current at 25 ˚C, 50 ˚C and 80 ˚C while applying the +20 V gate voltage to the transistors. It has been observed that PANI channel FET sensor detects H2 gas but adding nanostructured-ZnO into PANI improves the detection performance. Besides, unlike the PANI channel FET sensor, it has been determined that PANI/nanostructured-ZnO composite channel FET sensors operate with an excellent performance at room temperature.
Anahtar Kelime:

Polianilin ve Polianilin/ ZnO Nanoyapılı FET Hidrojen Gazı Sensörlerinin Üretimi ve Karakterizasyonu

Öz:
Bu çalışmada, mikron-boyutlu alan etkili transistör (FET) sensörler polianilin kanallar kullanılarak üretilmiştir. Katkısız ve ZnO nanoparçacık katkılı PANI, serbest radikal kimyasal oksidatif polimerizasyon yöntemi ile sentezlenmiştir. Sentezlenen her iki PANI kullanılarak gaz algılama uygulaması için mikrofabrikasyon yöntemiyle mikron boyutlu, alan etkili transistör (FET) yapıda sensörler üretilmiştir. FET üretimi optik litografi yöntemiyle Si/SiO2 (285 nm) alttaş üzerine PANI ve PANI/nanoyapılı ZnO kanalların üretilmesiyle gerçekleştirilmiştir. Üretilen sensörlerin hidrojen (H2) gazına karşı gösterdiği elektriksel tepkiler, 25 ˚C, 50 ˚C ve 80 ˚C sıcaklıkta transistöre +20 V kapı gerilimi uygulanırken, kaynak-akaç akımı değişimleri ölçülerek belirlenmiştir. PANI kanal ile üretilen sensörlerin H2 gazını algıladığı ancak PANI içerisine nanoyapılı ZnO katkılamanın algılama performansını iyileştirdiği gözlemlenmiştir. Ayrıca PANI kanallı FET sensörün aksine PANI/nanoyapılı ZnO kompozit kanallı FET sensörlerin oda sıcaklığında oldukça iyi bir performansla çalıştığı tespit edilmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Timmer B., Olthuis W., van den Berg A., Ammonia sensors and their applications review. Sensors and Actuators B: Chemical, 107 (2005), 666-677.
  • [2] Mahajan S. 1985. Pollution Control in Process Industries. Tata McGrawHill Education, Noida, India.
  • [3] Gu H., Wang Z., Hu Y., Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 12 (2012) 5517–5550.
  • [4] Zhao X., Lv L., Pan B., Zhang W., Zhang S., Zhang Q., Polymer-supported nanocomposites for environmental application: a review. Chemical Engineering Journal, 170 (2011), 381–394.
  • [5] Yoshioka Y., Jabbour G.E., Desktop inkjet printer as a tool to print conducting polymers. Synthetic metals, 156 (2006), 779–783.
  • [6] Li X., Wang Z., Li X., Wang G., Synthesis of a super-hydrophilic conducting polyaniline/titanium oxide hybrid with a narrow pore size distribution. Applied Surface Science, 258 (2012), 4788–4793.
  • [7] Gui D., Liu C., Chen F., Liu J., Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor. Applied Surface Science, 307 (2014),172–177.
  • [8] Li Y., Lin Y., Yeh H., Wen T., Huang L., Chen Y., Wang Y., Ion-modulated electrical conduction in polyaniline-based field-effect transistors. Applied Physics Letters, 92 (2008), 093508.
  • [9] Wang S., Kang Y., Wang L., Zhang H., Wang Y., Wang Y., Organic/inorganic hybrid sensors: a review. Sensors and Actuators B, 182 (2013), 467–481.
  • [10] Nicolas-Debarnot D., Poncin-Epaillard F., Polyaniline as a new sensitive layer for gas sensors. Analytica chimica acta, 475 (2003), 1–15.
  • [11] Farooqi B. A., Yar M., Ashraf A., Farooq U., and Ayub K., Graphene-polyaniline composite as superior electrochemical sensor for detection of cyano explosives. European Polymer Journal, 138 (2020) 109981.
  • [12] Hübert T., Boon-Brett L., Black G., Banach U., Hydrogen sensors – A review. Sensors and Actuators B, 157 (2011), 329–352.
  • [13] Al-Mashat L., Tran H.D., Wlodarski W., Kaner R.B., Kalantar-Zadeh K., Conductometric hydrogen gas sensor based on polypyrrole nanofibers. IEEE Sensors Journal, 8 (2008), 365-370.
  • [14] Bhadra S., Khastgir D., Singha N.K., Lee J.H., Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34 (2009), 783–810.
  • [15] Srivastava S., Kumar S., Singh V.N., Singh M., Vijay Y.K., Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing. International Journal of Hydrogen Energy, 36 (2011), 6343-6355.
  • [16] MacDiarmid A.G., Synthetic metals: a novel role for organic polymers. Synthetic metals, 125 (2002), 11–22.
  • [17] Chandrakanthi R.L., Careem M., Preparation and characterization of CdS and Cu2S nanoparticle/polyaniline composite films. Thin Solid Films, 417 (2002), 51-56.
  • [18] He Y., Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route. Materials Chemistry and Physics, 92 (2005), 134-137.
  • [19] Neri G., First fifty years of chemo resistive gas sensors. Chemosensors, 3 (2015), 1-20.
  • [20] Farooqi B.A., Yar M., Ashraf A., Farooq U., Ayub K., Remarkable enhancement in sensor ability of polyaniline upon composite formation with ZnO for industrial effluents. Journal of Molecular Graphics and Modelling, 101 (2020) 107724.
  • [21] Khan S., Yar M., Kosar N., Ayub K., Arshad M., Zahid M. N. and Mahmood T., First-principles study for exploring the adsorption behavior of G-series nerve agents on graphdyine surface. Computational and Theoretical Chemistry, 1191 (2020) 113043.
  • [22] Kang Y., Yu F., Zhang L., Wang W., Chen L., and Li Y., Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 360 (2021) 115544.
  • [23] Chougule M.A., Nalage S.R., Sen S., Patil V.B., Development of nanostructured ZnO thin film sensor for NO2 detection. Journal of Experimental Nanoscience, 9 (2014), 482-490.
  • [24] Patil L.A., Bari A.R., Shinde, Deo V., Ultrasonically synthesized nanocrystalline ZnO powder-based thick film sensor for ammonia sensing. Sensor Review, 30 (2010) 290-296.
  • [25] Van Hieu N., Van Quang V., Hoa N.D., Kim D., Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Current Applied Physics, 11 (2011), 657-661.
  • [26] Sanchez M., Rincon M.E., Sensor response of sol-gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques. Sensors and Actuators B: Chemical, 140 (2009), 17-23.
  • [27] Gu H.,Wang Z., Hu Y., Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 12 (2012), 5517–5550.
  • [28] Hubert T., Boon-Brett L., Black G., Banach U., Hydrogen sensors: a review. Sensors and Actuators B, 157 (2011), 329–352.
  • [29] Su S.-J., Kuramoto N., Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic metals, 114 (2000), 147-153.
  • [30] Chauhan J., Preparation and characterization of polyaniline/ZnO composite sensor. Nanomedicine Research Journal, 5 (2017).
  • [31] Tai H., Jiang Y., Xie G., Yu J., Chen X., Fabrication and gas sensitivity of polyanilineetitanium dioxide nanocomposite thin film. Sensors and Actuators B: Chemical, 125 (2007), 644-650.
  • [32] Geng L., Zhao Y., Huang X., Wang S., Zhang S., Wu S., Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sensors and Actuators B: Chemical, 120 (2007), 568-572.
  • [33] Parvatikar N., Jain S., Khasim S., Revansiddappa M., Bhoraskar S.V., Prasad M.V.N.A., Electrical and humidity sensing properties of polyaniline/ WO3 composites. Sensors and Actuators B: Chemical, 114 (2006), 599-603.
  • [34] Patil S.L., Chougule M.A., Pawar S.G., Sen S., Moholkar A. V., Kim J.H.,. Patil V.B, Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sensors and Transducers, 134 (2011), 120.
  • [35] Labena, A., Novel, Low Cost and Fast Detection Sensor for Biogenic H2S Gas Based on Polyaniline/ZnO, CdO and CeO2 nanocomposites at Room Temperature. Egyptian Journal of Chemistry (2021).
  • [36] Korent A., Žagar Soderžnik K., Šturm S., Žužek Rožman K., Redon N., Wojkiewicz J. L., and Duc C., Facile Fabrication of an Ammonia-Gas Sensor Using Electrochemically Synthesised Polyaniline on Commercial Screen-Printed Three-Electrode Systems. Sensors, 21(1) (2021), 169.
  • [37] Huang J., Yang T., Kang Y., Wang Y., Wang S., Gas sensing performance of polyaniline/ZnO organic-inorganic hybrids for detecting VOCs at low temperature. Journal of Natural Gas Chemistry, 20 (2011), 515-519.
  • [38] Sadek A.Z., Baker C.O., Powell D.A., Wlodarski W., Kaner R.B., Kalantar-Zadeh K., Polyaniline nanofiber-based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response, IEEE Sensors Journal, 7 (2) (2007), 213–218.
  • [39] Nasirian Sh., Milani Moghaddam H., Hydrogen gas sensing based on polyaniline/anatase titania nanocomposite, International Journal of Hydrogen Energy, 39 (2014), 630–642.
  • [40] Sadek A.Z., Wlodarski W., Kalantar-Zadeh K., Baker C., Kaner R.B., Doped and doped polyaniline nanofiber-based conductometric hydrogen gas sensors, Sensors and Actuators A, 139 (2007), 53–57.
  • [41] Tai H., Jiang Y., Xie G., Yu J., Chen X., Ying Z., Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors and Actuators B, 129 (2008), 319–326.
  • [42] Milani Moghaddam H., Nasirian Sh., Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions, Applied Surface Science, 317 (2014), 117–124.
  • [43] Su S., Kuramoto N., Processable polyaniline–titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synthetic Metals,. 114 (2000), 147–153.
  • [44] Xia X., Chao D., Qi X.,. Xiong Q, Zhang Y., Tu J., Zhang H., Jin Fan H., Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties, Nano Letters, 13 (9) (2013), 4562–4568.
  • [45] Diebold U., The surface science of titanium dioxide. Surface science reports, 48 (2003), 53–229.
  • [46] Batzill M., Diebold U., The surface and materials science of tin oxide. Progress in Surface Science, 79 (2005), 47–154.
  • [47] Goncalves R.H., Schreiner W.H., Leite E.R., Synthesis of TiO2 nanocrystals with a high affinity for organic amine compounds. Langmuir, 26 (14) (2010), 11657–11662.
  • [48] MacDiarmid A.G. 2005. Presentation at DOE Center of Excellence on Carbon-based H2 storage. USA.
  • [49] Nasirian S., Milani Moghaddam H., Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions. Applied Surface Science, 328 (2015), 395–404.
  • [50] Hirlemann A., Brand O., Hagleitner C., Baltes H., Microfabrication Techniques for Chemical/Biosensors. Proceedings of the IEEE, 91 (6) (2003), 839-863.
  • [51] Saini P., Choudhary V. and Dhawan S. K., Electrical properties and EMI shielding behavior of highly thermally stable polyaniline/colloidal graphite composites. Polymers for Advanced Technologies, 20 (2009), 355-361.
  • [52] Renkuan Y., Shucheng Y., Hong Y., Ruolian J., Huizuo Q. and Decheng G., Surface Field Effect of Polyaniline Film. Synthetic Metals, 41 (1991), 727-730.
  • [53] Wu Y., Zhong Y., Kang W., Yang T., Zhou M., Zhou L. and Liu Y., Two new luminescent Cd(II)-based coordination polymers by regulating the asymmetrical tetracarboxylate and auxiliary ligands displaying high sensitivity for Fe3+ and CrO42-. CrystEngComm, 13 (2021), 2514-2522.
  • [54] Pouget J.P., Hsu C.H., MacDiarmid A.G., Epstein A.J., Structural investigation of metallic PAN-CSA and some of its derivatives. Synthetic Metals, 69 (1995), 119-120.
  • [55] Zor S., Budak B., Investigation of the effect of PAn and PAn/ZnO photocatalysts on 100% degradation of Congo red under UV visible light irradiation and lightless environment. Turkish Journal of Chemistry, 44 (2) (2020), 486-501.
  • [56] Park Y., Moon D. K., Kim Y. H., Ahn H., Lee C. H., Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0 MPa. Adsorption, 20 (2014), 631-647.
  • [57] Kaiser B., Liu C. J., Gilberd P. W., Chapman B., Kemp N. T., Wessling B. B., Partridge A. C., Smith W. T. and Shapiro J., Comparison of electronic transport in polyaniline blends, polyaniline and polypyrrole. Synthetic Metals, 84 (1997), 699-702.
APA OZBAY KARAKUS M, Çetin H (2021). Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. , 99 - 109.
Chicago OZBAY KARAKUS MÜCELLA,Çetin Hidayet Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. (2021): 99 - 109.
MLA OZBAY KARAKUS MÜCELLA,Çetin Hidayet Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. , 2021, ss.99 - 109.
AMA OZBAY KARAKUS M,Çetin H Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. . 2021; 99 - 109.
Vancouver OZBAY KARAKUS M,Çetin H Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. . 2021; 99 - 109.
IEEE OZBAY KARAKUS M,Çetin H "Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors." , ss.99 - 109, 2021.
ISNAD OZBAY KARAKUS, MÜCELLA - Çetin, Hidayet. "Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors". (2021), 99-109.
APA OZBAY KARAKUS M, Çetin H (2021). Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 37(1), 99 - 109.
Chicago OZBAY KARAKUS MÜCELLA,Çetin Hidayet Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 37, no.1 (2021): 99 - 109.
MLA OZBAY KARAKUS MÜCELLA,Çetin Hidayet Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.37, no.1, 2021, ss.99 - 109.
AMA OZBAY KARAKUS M,Çetin H Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 37(1): 99 - 109.
Vancouver OZBAY KARAKUS M,Çetin H Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 37(1): 99 - 109.
IEEE OZBAY KARAKUS M,Çetin H "Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors." Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 37, ss.99 - 109, 2021.
ISNAD OZBAY KARAKUS, MÜCELLA - Çetin, Hidayet. "Fabrication and Characterization of Polyaniline and Polyaniline/Nanostructured-ZnO FET Hydrogen Gas Sensors". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 37/1 (2021), 99-109.