Yıl: 2021 Cilt: 37 Sayı: 1 Sayfa Aralığı: 61 - 73 Metin Dili: Türkçe İndeks Tarihi: 18-10-2021

Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması

Öz:
Bu çalışmada, su bazlı farklı CuO-Al2O3 hibrit nanoakışkan fraksiyonlarının termal ve hidrolik performans üzerindeki etkisini araştırmak üzere sabit ısı akısı altındaki yatay bir düz boruda sayısal analizler yapılmıştır. Sayısal modelde gelişmiş türbülanslı akışı şartlarını sağlamak için test bölgesinden önce akış gelişim bölgesi oluşturulmuştur. Türbülanslı akışı modellemek için k-ω Shear Stress Transport (SST) türbülans modeli kullanılmış ve 10.000 ila 100.000 arasında değişen Reynolds sayısı için analizler gerçekleştirilmiştir. Kullanılan nanoakışkanın termo-fiziksel özellikleri literatürdeki korelasyonlar ile hesaplanmıştır. Nanoakışkan hacim fraksiyonları toplamda, %2, 3, 4 ve 5 olacak şekilde konfigüre edilmiştir. Sonuç olarak, en yüksek termo-hidrolik performans, incelenen tüm Reynolds sayıları için her iki nanopartikülün hacim fraksiyonları birbirine yakın olduğu durumda elde edilmiştir. Ayrıca elde edilen sonuçlardan Al2O3'in hacim fraksiyonunun CuO'e kıyasla termo-hidrolik performans değeri üzerinde daha önemli bir etkisi olduğu görülmüştür. Elde edilen sonuçlar kullanılarak incelenen tüm konfigürasyonları kapsayan Nusselt sayısı ve sürtünme faktörleri için korelasyonlar geliştirilmiştir.
Anahtar Kelime:

Investigation of the Effect of Using Water Based Hybrid Nanofluid on Thermal and Hydraulic Performance in a Heat Exchanger

Öz:
In this study, numerical analyzes were performed on a horizontal straight tube under constant heat flux to investigate the effect of different water-based CuO- Al2O3 hybrid nanofluid fractions on thermal and hydraulic performance. In the numerical model, a flow development section was created before the test section to provide developed turbulent flow conditions. To model turbulent flow, the k-ω Shear Stress Transport (SST) turbulence model was used and analyzes were performed for Reynolds numbers ranging from 10,000 to 100,000. The thermo-physical properties of the nanofluid used were calculated with correlations in the literature. The nanofluidic volume fractions are configured to be 2, 3, 4 and 5% in total. As a result, the highest thermo-hydraulic performance was obtained when the volume fractions of both nanoparticles were close to each other for all Reynolds numbers studied. In addition, it was seen from the results that the volume fraction of Al2O3 has an important effect on the thermo-hydraulic performance value compared to CuO. Correlations were developed with obtained results for Nusselt number and friction factors covering all the investigated configurations.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Webb, R. L. Advances in shell side boiling of refrigerants. Advances in shell side boiling of refrigerants, 87(1991), 75–86.
  • [2] Jaber, M. H..Webb, R.and Stryker, P. An experimental investigation of enhanced tubes for steam condensers. , in Conference: An experimental investigation of enhanced tubes for steam condensers, 1991, (1991), , 1–8.
  • [3] Sunden, B. and Xie, G. Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey. Heat Transfer Engineering, 31(2010), 527–554.
  • [4] Saidur, R..Leong, K. Y.and Mohammad, H. A. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15(2011), 1646–1668.
  • [5] Eiamsa-ard, S. and Promvonge, P. Numerical study on heat transfer of turbulent channel flow over periodic grooves. International Communications in Heat and Mass Transfer, 35(2008), 844–852.
  • [6] Azari, A..Kalbasi, M..Derakhshandeh, M.and Rahimi, M. An Experimental Study on Nanofluids Convective Heat Transfer Through a Straight Tube under Constant Heat Flux. Chinese Journal of Chemical Engineering, 21(2013), 1082–1088.
  • [7] Zeinali Heris, S..Etemad, S. G.and Nasr Esfahany, M. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(2006), 529–535.
  • [8] Heyhat, M. M..Kowsary, F..Rashidi, A. M..Alem Varzane Esfehani, S.and Amrollahi, A. Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. International Communications in Heat and Mass Transfer, 39(2012), 1272–1278.
  • [9] Tawfik, M. M. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews, 75(2017), 1239–1253.
  • [10] Keklikcioglu, O..Dagdevir, T.and Ozceyhan, V. Heat transfer and pressure drop investigation of graphene nanoplatelet-water and titanium dioxide-water nanofluids in a horizontal tube. Applied Thermal Engineering, 162(2019).
  • [11] Dagdevir, T. and Ozceyhan, V. Optimization of process parameters in terms of stabilization and thermal conductivity on water based TiO2 nanofluid preparation by using Taguchi method and Grey relation analysis. International Communications in Heat and Mass Transfer, (2020), 105047.
  • [12] Sajid, M. U. and Ali, H. M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews, 103(2019), 556–592.
  • [13] Dagdevir, T..Keklikcioglu, O.and Ozceyhan, V. The effect of chamfer length on thermal and hydraulic performance in Al2O3–water nanofluid flow through a duct of square cross section. Heat Transfer Research, 50(2019).
  • [14] Wen, D. and Ding, Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(2004), 5181–5188.
  • [15] Sahin, B..Gültekin, G. G..Manay, E.and Karagoz, S. Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid. Experimental Thermal and Fluid Science, 50(2013), 21–28.
  • [16] Hemmat Esfe, M..Saedodin, S.and Mahmoodi, M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Experimental Thermal and Fluid Science, 52(2014), 68–78.
  • [17] Trisaksri, V. and Wongwises, S. Critical review of heat transfer characteristics of nanofluids. Renewable and Sustainable Energy Reviews, 11(2007), 512–523.
  • [18] Nuim Labib, M..Nine, M. J..Afrianto, H..Chung, H.and Jeong, H. Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer. International Journal of Thermal Sciences, 71(2013), 163–171.
  • [19] Demir, H..Dalkilic, A. S..Kürekci, N. A..Duangthongsuk, W.and Wongwises, S. Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. International Communications in Heat and Mass Transfer, 38(2011), 218–228.
  • [20] Palm, S. J..Roy, G.and Nguyen, C. T. Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties. Applied Thermal Engineering, 26(2006), 2209–2218.
  • [21] Göktepe, S..Atalık, K.and Ertürk, H. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. International Journal of Thermal Sciences, 80(2014), 83–92.
  • [22] Rashidi, M. M. and Hosseini, A. and Pop, I. and Kumar, S. and Freidoonimehr, N. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Applied Mathematics and Mechanics, 35(2014), 831–848.
  • [23] Ghafouri, A. and Salari, M. Numerical investigation of the heat transfer enhancement using various viscosity models in chamber filled with water–CuO nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(2014), 825–836.
  • [24] Dawood, H. K..Mohammed, H. A..Sidik, N. A. C.and Munisamy, K. M. Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid. International Communications in Heat and Mass Transfer, 66(2015), 148–157.
  • [25] Cengel, Y. A. and John, C. M. Fuid Mechanics: Fundamentals and Applications, (2012). MCGraw-Hill Education, 2012.
  • [26] Salim, M. S. and S.C., C. Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows. , in Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II, 2009, (2009), , 2165–2170.
  • [27] Welty, J. R..Rorrer, G. L.and Foster, D. . Fundamentals of Momentum, Heat and Mass Transfer, 6th ed., (2014). New Jersey, 2014.
  • [28] White, F. M. Viscous Fluid Flow, 2nd ed., (1991). McGraw Hill, 1991.
  • [29] Rostamani, M..Hosseinizadeh, S. F..Gorji, M.and Khodadadi, J. M. Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. International Communications in Heat and Mass Transfer, 37(2010), 1426–1431.
  • [30] Duangthongsuk, W. and Wongwises, S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International Journal of Heat and Mass Transfer, 53(2010), 334–344.
  • [31] Karimzadehkhouei, M..Yalcin, S. E..Şendur, K..Pınar Mengüç, M.and Koşar, A. Pressure drop and heat transfer characteristics of nanofluids in horizontal microtubes under thermally developing flow conditions. Experimental Thermal and Fluid Science, 67(2015), 37–47.
  • [32] Zhang, J..Diao, Y..Zhao, Y.and Zhang, Y. Experimental study of TiO 2 –water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube. International Journal of Heat and Mass Transfer, 79(2014), 628–638.
  • [33] Meriläinen, A. et al. Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids. International Journal of Heat and Mass Transfer, 61(2013), 439–448.
  • [34] He, Y..Jin, Y..Chen, H..Ding, Y..Cang, D.and Lu, H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50(2007), 2272–2281.
  • [35] Ko, G. H. et al. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. International Journal of Heat and Mass Transfer, 50(2007), 4749–4753. [36] Duangthongsuk, W. and Wongwises, S. Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. International Communications in Heat and Mass Transfer, 35(2008), 1320–1326.
  • [37] Duangthongsuk, W. and Wongwises, S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52(2009), 2059–2067.
  • [38] Fluent. ANSYS Fluent User Guide. , (2016). New Hampshire, 2016.
  • [39] Hamilton RL. and Crosser OK. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(1962), 187–191.
  • [40] Das, P. K..Mallik, A. K..Ganguly, R.and Santra, A. K. Stability and thermophysical measurements of TiO2 (anatase) nanofluids with different surfactants. Journal of Molecular Liquids, 254(2018), 98–107.
  • [41] Kumar, A. and Subudhi, S. Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Applied Thermal Engineering, 160(2019), 114092.
  • [42] Ghadimi, A..Saidur, R.and Metselaar, H. S. C. A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(2011), 4051–4068.
  • [43] Webb, R. L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. International Journal of Heat and Mass Transfer, 24(1981), 715–726.
APA dagdevir t, Ozceyhan V (2021). Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. , 61 - 73.
Chicago dagdevir toygun,Ozceyhan Veysel Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. (2021): 61 - 73.
MLA dagdevir toygun,Ozceyhan Veysel Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. , 2021, ss.61 - 73.
AMA dagdevir t,Ozceyhan V Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. . 2021; 61 - 73.
Vancouver dagdevir t,Ozceyhan V Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. . 2021; 61 - 73.
IEEE dagdevir t,Ozceyhan V "Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması." , ss.61 - 73, 2021.
ISNAD dagdevir, toygun - Ozceyhan, Veysel. "Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması". (2021), 61-73.
APA dagdevir t, Ozceyhan V (2021). Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 37(1), 61 - 73.
Chicago dagdevir toygun,Ozceyhan Veysel Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 37, no.1 (2021): 61 - 73.
MLA dagdevir toygun,Ozceyhan Veysel Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.37, no.1, 2021, ss.61 - 73.
AMA dagdevir t,Ozceyhan V Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 37(1): 61 - 73.
Vancouver dagdevir t,Ozceyhan V Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 37(1): 61 - 73.
IEEE dagdevir t,Ozceyhan V "Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması." Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 37, ss.61 - 73, 2021.
ISNAD dagdevir, toygun - Ozceyhan, Veysel. "Bir Isı Değiştiricisinde Su Bazlı Hibrit Nanoakışkan Kullanımının Termal ve Hidrolik Performans Üzerine Etkisinin Araştırılması". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 37/1 (2021), 61-73.