Yıl: 2021 Cilt: 11 Sayı: 2 Sayfa Aralığı: 67 - 72 Metin Dili: İngilizce DOI: 10.26650/experimed.2021.953435 İndeks Tarihi: 18-10-2021

The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos

Öz:
Objective: As an anionic surfactant, sodium lauryl sulphate (SLS), is used as an emulsifying agent in toothpastes as well as many different household cleaning products. Many toothpastes contain SLS and it is responsible for the formation of foam when brushing. However SLS may also irritate sensitive teeth and gums. Lipid peroxidation (LPO) is defined as an autoxidation process that is induced through the attack of free oxygen radicals leading to oxidative stress in the pathophysiology of various diseases. LPO causes the formation of highly reactive products including different aldehydes, ketones, and alkanes serving as biomarkers of LPO. In our study we aimed to expose zebrafish embryos to SLS and determine LPO in SLS exposed zebrafish embryos. Material and Method: Zebrafish embryos that were dividing normally and which had spherical shapes were chosen and they were exposed to SLS both in low and high concentrations in well plates for 72 hours. Rates of mortality and hatching were determined. The levels of malondialdehyde were evaluated using the Yagi's method as the end products of LPO in the form of thiobarbituric acid reactive substances. Results: Our findings showed LPO increased significantly in both low SLS (p<0.05) and high dose SLS (p<0.05) exposed zebrafish embryos when they were compared to the control group. Conclusion: It may be suggested that LPO is an early indicator of exposure to SLS during embryogenesis and further studies are required to confirm this finding.
Anahtar Kelime:

Sodyum Lauril Sülfatın Gelişmekte Olan Zebra Balığı Embriyolarında Biyouyumluluğu

Öz:
Amaç: Sodyum lauril sülfat (SLS), ev temizlik ürünleri ve diş macun larında emülsifiye edici temizlik maddesi olarak kullanılan anyonikbir yüzey aktif maddedir. Birçok diş macunu fırçalarken köpük olu şumuna yol açan SLS içerir. Ancak SLS hassas diş ve diş etlerini tahrişedebilir. Lipid peroksidasyonu (LPO), çeşitli hastalıkların patofizyo lojisinde oksidatif strese yol açan serbest radikallerin saldırısı ilebaşlatılan bir otooksidasyon sürecidir. LPO, LPO'nun biyobelirteçleriolarak görev yapan farklı aldehitler, ketonlar, alkanlar dahil olmaküzere reaktif ürünlerin oluşumuna neden olur. Çalışmamızın amacı,SLS'ye maruz kalan zebra balığı embriyolarında oluşan LPO'yu de ğerlendirmektir. Gereç ve Yöntem: Normal olarak bölünen küresel embriyolar, 72saat boyunca plaka kuyucuklarında düşük ve yüksek dozda SLS'yemaruz bırakılmıştır. Mortalite ve kuluçkadan çıkma oranları belir lenmiştir. Tiyobarbitürik asit reaktif maddeler olarak LPO'nun sonürünü olan malondialdehit (MDA) düzeyini belirlemek için Yagiyöntemi kullanılmıştır. Bulgular: Bulgularımız, hem düşük SLS (p<0,05) hem de yüksekdoz SLS’ye (p<0,05) maruz kalan zebra balığı embriyolarında kont rol grubu ile karşılaştırıldığında LPO'nun önemli ölçüde arttığınıgöstermiştir. Sonuç: LPO'nun embriyogenez sırasında SLS'ye maruz kalmanınerken bir göstergesi olduğu öne sürülebilir ve bu bulguyu doğru lamak için farklı çalışmaların yapılması gerektiği düşünülmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Erişime Açık
  • 1. Magny R, Auzeil N, Olivier E, Kessal K, Regazzetti A, Dutot M, et al. Lipidomic analysis of human corneal epithelial cells exposed to ocular irritants highlights the role of phospholipid and sphingolipid metabolisms in detergent toxicity mechanisms. Biochimie 2020; 178: 148-57. [CrossRef]
  • 2. Bondi CAM, Marks JL, Wroblewski LB, Raatikainen HS, Lenox RS, Gebhardt KE. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products. Environ Health Insights 2015; 9: 27-32. [CrossRef]
  • 3. Cosmetic Ingredient Review (CIR). Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate. Int J Toxicol 1983; 2(7): 1-34.
  • 4. Robinson VC, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Marks JG, et al. Final report of the amended safety assessment of sodium lauryl sulfate and related salts of sulfated ethoxylated alcohols. Int J Toxicol 2010; 29(4): 151S-61S.
  • 5. Proctor & Gamble (P&G). Safety Data Sheets. Accessed August 19, 2015. Available from: URL: http://www.pgprod- uctsafety.com/ productsafety.
  • 6. Seventh Generation. Material Safety Data Sheets. Accessed August 17, 2015. Available from: URL: http://www.sev- enthgeneration.com/material-safety-data-sheets.
  • 7. Lippert F. An introduction to toothpaste its purpose, history and ingredients. Van Loveren C. Toothpastes. 23. Basel: Karger; 2013. p. 1-14.
  • 8. Jenkins S, Andy M, Newcombe R. Triclosan and sodium lauryl sulphate mouth rinses effects on salivary bacterial counts. J Clin Periodontol 1991; 18(2):140-8. [CrossRef]
  • 9. Herlofson BB, Barkvoll P. Oral Mucosal desquamation caused by two toothpaste detergents in an experimental model. Eur J Oral Sci 1996; 104(1): 21-6.
  • 10. Material Safety Data Sheet: Sodium Chloride. Accessed August 20, 2015. Available from: URL: http://www.sciencelab.com/msds. php?msdsId.
  • 11. Product Bulletin: Sodium Lauryl Sulfate. Stepan Company, Northfield, Illinois; 2012. Available from: URL: https://www.stepan.com
  • 12. Material Safty Data Sheet: STEPANOL WA-EXTRA K. Stephan Company, Northfield, Illinois; 2006. Available from: URL: https://www. stepan.com
  • 13. OECD Screening Information Data Set (SIDS). Sodium Dodecyl Sulfate. August 19, 2015. Available from: URL:http://www.chem. unep.ch/irptc/sids/OECDSIDS/151213.htm
  • 14. Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG. Nanomaterials meet zebrafish: Toxicity evaluation and Drug Delivery Applications. J Control Release 2019; 311-312: 301-18.
  • 15. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D. The Zebrafish embryo model in environmental Risk assessment applications beyond acute toxicity testing. Environ Sci Pollut Res 2008; 15(5): 394-404. [CrossRef]
  • 16. Chakravarty S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as an in vivo high-throughput Model for Genotoxicity. Zebrafish 2014; 11: 154-66. [CrossRef]
  • 17. Kayhan FE, Kaymak G, Esmerduruel HE, Tartarkızılkaya Ş. Biyolojik Araştırmalarda Zebra Balığının Kullanılması ve Önemi. GBAD 2018; 7: 2.
  • 18. Gaschler M, Stockwell B R. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017; 482(3): 419-25. [CrossRef]
  • 19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75. [CrossRef]
  • 20. Yagi K. Assay for blood plasma or serum. Methods Enzymol 1984; 105: 328-37. [CrossRef]
  • 21. Hoogendoorn H, Scholtes W. Influence of the ctivation of the lactoperoxidase System in saliva on the initiation of caries and chronic, recurrent aphthes. I. Ned Tijdschr Tandheelkd 1979; 86(1): 36-9.
  • 22. Shim YJ, Choi JH, Ahn HJ, Kwon JS. Effect of sodium lauryl sulfate on recurrent aphthous stomatitis: a randomized controlled clinical trial. Oral Dis 2012; 18(7): 655-60. [CrossRef]
  • 23. Siegel IA, Gordon HP. Surfactant induced alterations of permeability of rabbit oral mucosa in vitro. Exp Mol Pathol 1986; 44(2): 132-7. [CrossRef]
  • 24. Stec IP. A possible relationship between desquamation and dentifrices. A clinical study. J Am Dent Hyg Assoc 1972; 46(1): 42-5.
  • 25. Kowitz G, Lucatorto F, Bennett W. Effects of dentifrices on soft tissues of the oral cavity. J Oral Med. 1973; 28(4): 105-9.
  • 26. Allen AL, Hawley CE, Cutright DE, Seibert JS. An investigation of the clinical and histologic effects of selected dentifrices on human palatal mucosa. J Periodontol 1975; 46(2): 102-12. [CrossRef]
  • 27. Baert JH, Veys RJ. Triclosan inhibits sodium lauryl sulphate-induced changes in expression of cytokeratin genes in hamster check pouch epithelium. J Oral Pathol Med 1997; 26: 181-6. [CrossRef]
  • 28. Tadin A, Gavic L, Govic T, Galic N, Vladislavic ND, Zeljezic D. In vivo evaluation of fluoride and sodium lauryl sulphate in toothpaste on buccal epithelial cells toxicity. Acta Odontol Scand 2019; 77: 386-93. [CrossRef]
  • 29. Meşeli S, Yanıkoğlu F, Arslantunalı Tağtekin D. Diş Macunları Toksik Mi? Arslantunalı Tağtekin D, editör. Diş Macun ve Kremleri. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. p.122-7.
  • 30. Escarrone AL, Caldas SS, Primel EG, Martins SE, Nery LE. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. Sci Total Environ 2016; 560- 561: 218-24.
  • 31. Newton AP, Cadena SM, Rocha ME, Carnieri EG, Martinelli De Oliveira MB. Effect of triclosan (TRN) on energy-linked functions of rat liver mi- tochondria. Toxicol Lett 2005; 160: 49-59. [CrossRef]
  • 32. Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is triclosan a neurotoxic agent? J Toxicol Environ Health 2017; B 20:104-17.
  • 33. Cherednichenko G, Zhang R, Bannister RA, Timofeyev V, Li N, Fritsch EB, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci USA 2012; 109: 14158-63. [CrossRef]
  • 34. Etzel TM, Calafat AM, Ye X, Chen A, Lanphear BP, Savitz DA, et al. Urinary triclosan concen- trations during pregnancy and birth out- comes. Environ Res 2017; 156: 505-11. [CrossRef]
  • 35. Yi HY, Wang ZY, Li XJ, Yin M, Wang LH, Aldalbahi A, et al. Silica nanoparticles target a Wnt signal transducer for degradation and im- pour embryonic development in zebrafish. Theranostics 2016; 6(11): 1810-20. [CrossRef]
  • 36. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma) 2014; 5(3):108-14.
  • 37. Brunelli E, Talarico E, Corapi B, Perrotta I, Tripepi S. Effects of a sublethal concentration of sodium lauryl sulphate on the morphology and Na+/K+ ATPase activity in the gill of the ornate wrasse (Thalassoma pavo). Ecotoxicol Environ Saf 2008; 71(2): 436-45. [CrossRef]
  • 38. Lock, RAC, Van Overbeeke P. Effects of mercuryc chloride andmethylmercuryc chloride on mucous secretion in rainbow trout, Salmogairdneri Richardson. Comp Biochem Physiol 1981; 69: 67- 73.
  • 39. Mathur AK, Gupta BN, Singh A, Singh S, Shanker R. Renal toxicity of nickel, sodium lauryl sulphate and their combination after dermal application in guinea pigs. Biomed Environ Sci 1993; 6(3): 231-6.
APA MEŞELİ S, KAPLAN G, Cansız D, Ustundag U, Ünal İ, Emekli-Alturfan E, Yanikoglu F, Tagtekin D (2021). The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. , 67 - 72. 10.26650/experimed.2021.953435
Chicago MEŞELİ Simge,KAPLAN Gül,Cansız Derya,Ustundag Unsal Veli,Ünal İsmail,Emekli-Alturfan Ebru,Yanikoglu Funda,Tagtekin Dilek The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. (2021): 67 - 72. 10.26650/experimed.2021.953435
MLA MEŞELİ Simge,KAPLAN Gül,Cansız Derya,Ustundag Unsal Veli,Ünal İsmail,Emekli-Alturfan Ebru,Yanikoglu Funda,Tagtekin Dilek The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. , 2021, ss.67 - 72. 10.26650/experimed.2021.953435
AMA MEŞELİ S,KAPLAN G,Cansız D,Ustundag U,Ünal İ,Emekli-Alturfan E,Yanikoglu F,Tagtekin D The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. . 2021; 67 - 72. 10.26650/experimed.2021.953435
Vancouver MEŞELİ S,KAPLAN G,Cansız D,Ustundag U,Ünal İ,Emekli-Alturfan E,Yanikoglu F,Tagtekin D The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. . 2021; 67 - 72. 10.26650/experimed.2021.953435
IEEE MEŞELİ S,KAPLAN G,Cansız D,Ustundag U,Ünal İ,Emekli-Alturfan E,Yanikoglu F,Tagtekin D "The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos." , ss.67 - 72, 2021. 10.26650/experimed.2021.953435
ISNAD MEŞELİ, Simge vd. "The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos". (2021), 67-72. https://doi.org/10.26650/experimed.2021.953435
APA MEŞELİ S, KAPLAN G, Cansız D, Ustundag U, Ünal İ, Emekli-Alturfan E, Yanikoglu F, Tagtekin D (2021). The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. EXPERIMED, 11(2), 67 - 72. 10.26650/experimed.2021.953435
Chicago MEŞELİ Simge,KAPLAN Gül,Cansız Derya,Ustundag Unsal Veli,Ünal İsmail,Emekli-Alturfan Ebru,Yanikoglu Funda,Tagtekin Dilek The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. EXPERIMED 11, no.2 (2021): 67 - 72. 10.26650/experimed.2021.953435
MLA MEŞELİ Simge,KAPLAN Gül,Cansız Derya,Ustundag Unsal Veli,Ünal İsmail,Emekli-Alturfan Ebru,Yanikoglu Funda,Tagtekin Dilek The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. EXPERIMED, vol.11, no.2, 2021, ss.67 - 72. 10.26650/experimed.2021.953435
AMA MEŞELİ S,KAPLAN G,Cansız D,Ustundag U,Ünal İ,Emekli-Alturfan E,Yanikoglu F,Tagtekin D The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. EXPERIMED. 2021; 11(2): 67 - 72. 10.26650/experimed.2021.953435
Vancouver MEŞELİ S,KAPLAN G,Cansız D,Ustundag U,Ünal İ,Emekli-Alturfan E,Yanikoglu F,Tagtekin D The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos. EXPERIMED. 2021; 11(2): 67 - 72. 10.26650/experimed.2021.953435
IEEE MEŞELİ S,KAPLAN G,Cansız D,Ustundag U,Ünal İ,Emekli-Alturfan E,Yanikoglu F,Tagtekin D "The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos." EXPERIMED, 11, ss.67 - 72, 2021. 10.26650/experimed.2021.953435
ISNAD MEŞELİ, Simge vd. "The Biocompatibility of Sodium Lauryl Sulphate onDeveloping Zebrafish Embryos". EXPERIMED 11/2 (2021), 67-72. https://doi.org/10.26650/experimed.2021.953435