Yıl: 2021 Cilt: 33 Sayı: 1 Sayfa Aralığı: 116 - 121 Metin Dili: İngilizce DOI: 10.7240/jeps.771433 İndeks Tarihi: 20-10-2021

Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2

Öz:
Composites of calcinated bovine bone derived hydroxyapatite (BHA) doped 1 and 2 wt% MgF2 were prepared by a sintering process. Microstructure and crystallographic analyses along with measurements of density, compression strength, and microhardness were carried out in the produced samples. The experimental results indicated a beneficial effect of MgF2 in the matrix of BHA reflected in the significant increase of compression strength and microhardness up to 143 MPa and 313 HV, respectively, achieved after sintering at 1300 0C for 2% MgF2 addition. The presence of MgF2 reduced the onset of sintering towards lower temperatures (i.e. 1100 0C) and increased the stability of hydroxyapatite towards transformation to TCP at 1300 0C. The influence of Mg2+ and Fions in the lattice of hydroxyapatite is discussed.
Anahtar Kelime:

MgF2 ile Güçlendirilmiş Sığır Kaynaklı Hidroksiapatit (BHA) Kompozitlerinin Mikroyapısı ve Mekanik Özellikleri

Öz:
Kalsine edilmiş sığır kemiğinden elde edilen hidroksiapatit (BHA) ile ağırlıkça% 1 ve ağırlıkça% 2 MgF2 katkılı kompozitleribir sinterleme işlemi ile hazırlandı. Üretilen numunelerde mikroyapı ve kristalografik analizler ile birlikte yoğunluk, basmamukavemeti ve mikrosertlik ölçümleri yapıldı. Deneysel sonuçlar, % 2 MgF2 ilavesi ve 1300oC'de sinterlemeden sonra eldeedilen BHA matrisin, sıkıştırma mukavemeti ve mikro sertlikteki önemli artışa (sırasıyla 143 MPa ve 313 HV'ye kadar) nedenolduğunu gösterdi. MgF2'nin varlığı, sinterleme başlangıcını daha düşük sıcaklıklara (~ 1100oC) düşürdü ve hidroksiapatitin1300oC'de TCP'ye dönüşüme karşı stabilitesini arttırdı. Mg2 + ve Fiyonlarının hidroksiapatit örgüsündeki etkisi tartışıldı.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Oktar, F.N., Yetmez, M., Agathopoulos, S., Lopez Goerne, T.M., Goller, G., Peker, I. and et al., (2006). Bond-coating in plasma-sprayed calcium-phosphate coatings. J Mater Sci: Mater in Med, 17, 1161-71.
  • [2] Moukbil, Y., Isindag, B., Gayir, V., Ozbek, B., Haskoylu, M. E., Oner, E. T., Oktar, F. N., Ikram, F., Sengor, M., & Gunduz, O. (2020). 3D printed bioactive composite scaffolds for bone tissue engineering. Bioprinting, 17, e00064.
  • [3] Ibrahim, M., Labaki, M., Giraudon, J.-M., & Lamonier, J.-F. (2020). Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. Journal of Hazardous Materials, 383, 121139.
  • [4] Tiyyagura, H. R., Puliyalil, H., Filipič, G., Kumar, K. C., Pottathara, Y. B., Rudolf, R., Fuchs-Godec, R., Mohan, M. K., & Cvelbar, U. (2020). Corrosion studies of plasma modified magnesium alloy in simulated body fluid (SBF) solutions. Surface and Coatings Technology, 385, 125434.
  • [5] Yamasaki, Y., Yoshida, Y., Okazaki, M., Shimazu, A., Kubo, T., Akagawa, Y., & Uchida, T. (2003). Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials, 24(27), 4913—4920.
  • [6] Cai, Y., Zhang, S., Zeng, X., Wang, Y., Qian, M., & Weng, W. (2009). Improvement of bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings via sol–gel deposition on Ti6Al4V alloys. Thin Solid Films, 517(17), 5347– 5351.
  • [7] Jadidi, A., & Salahinejad, E. (2020). Mechanical strength and biocompatibility of bredigite (Ca7MgSi4O16) tissue-engineering scaffolds modified by aliphatic polyester coatings. Ceramics International, 46(10, Part B), 16439– 16446.
  • [8] Oktar, F. N., Agathopoulos, S., Ozyegin, L. S., Gunduz, O., Demirkol, N., Bozkurt, Y., & Salman, S. (2007). Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. Journal of Materials Science: Materials in Medicine, 18(11), 2137–2143.
  • [9] Kim, S.-J., Bang, H.-G., Song, J.-H., & Park, S.- Y. (2009). Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites. Ceramics International, 35(4), 1647– 1650.
  • [10] Evis, Z., Usta, M., & Kutbay, I. (2009). Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites. Journal of the European Ceramic Society, 29(4), 621–628.
  • [11] Evis, Z., Usta, M., & Kutbay, I. (2008). Hydroxyapatite and zirconia composites: Effect of MgO and MgF2 on the stability of phases and sinterability. Materials Chemistry and Physics, 110(1), 68–75.
  • [12] Oktar, F. N., K, K., & E, P. (1999). Characterization of Processed Tooth Hydroxyapatite for Potential Biomedical Implant Applications. Artificial Cells, Blood Substitutes, and Biotechnology, 27(4), 367–379.
  • [13] Carvalho, A. L., Faria, P. E. P., Grisi, M. F. M., Souza, S. L. S., Taba Jr, M., Palioto, D. B., Novaes Jr, A. B., Fraga, A. F., Ozyegin, L. S., Oktar, F. N., & Salata, L. A. (2007). Effects of Granule Size on the Osteoconductivity of Bovine and Synthetic Hydroxyapatite: A Histologic and Histometric Study in Dogs. Journal of Oral Implantology, 33(5), 267–276.
  • [14] Gunduz, O., Daglilar, S., Salman, S., Ekren, N., Agathopoulos, S., & Oktar, F. N. (2008). Effect of Yttria-doping on Mechanical Properties of Bovine Hydroxyapatite (BHA). Journal of Composite Materials, 42(13), 1281–1287.
  • [15] Komur, B., Lohse, T., Can, H. M., Khalilova, G., Geçimli, Z. N., Aydoğdu, M. O., Kalkandelen, C., Stan, G. E., Sahin, Y. M., Sengil, A. Z., Suleymanoglu, M., Kuruca, S. E., Oktar, F. N., Salman, S., Ekren, N., Ficai, A., & Gunduz, O. (2016). Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering. BioMedical Engineering OnLine, 15(1), 81.
  • [16] Salman, S., Gunduz, O., Yilmaz, S., Öveçoğlu, M. L., Snyder, R. L., Agathopoulos, S., & Oktar, F. N. (2009). Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium. Ceramics International, 35(7), 2965–2971.
  • [17] Gunduz, O., Erkan, E. M., Daglilar, S., Salman, S., Agathopoulos, S., & Oktar, F. N. (2008). Composites of bovine hydroxyapatite (BHA) and ZnO. Journal of Materials Science, 43(8), 2536– 2540.
  • [18] Ozyegin, L. S., Oktar, F. N., Goller, G., Kayali, E. S., & Yazici, T. (2004). Plasma-sprayed bovine hydroxyapatite coatings. Materials Letters, 58(21), 2605–2609.
  • [19] Ozyegin, L. S., Oktar, F. N., Agathopoulos, S., Salman, S., Bozkurt, Y., & Eruslu, N. (2007). Improvement of Microstructure of Bovine Hydroxyapatite (BHA) by Doping with Calcium Fluoride. Bioceramics 19, 330, 43–46.
  • [20] Goller, G., Oktar, F. N., Agathopoulos, S., Tulyaganov, D. U., Ferreira, J. M. F., Kayali, E. S., & Peker, I. (2006). Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). Journal of Sol-Gel Science and Technology, 37(2), 111–115.
  • [21] Gören, Ş., Gökbayrak, H., & Altintaş, S. (2004). Production of hydroxylapatite from animal bone. Key Engineering Materials, 264–268, Issue III, pp. 1949–1952.
  • [22] Oktar, F. N. (2006). Hydroxyapatite–TiO2 composites. Materials Letters, 60(17), 2207– 2210.
  • [23] Salman, S., Oktar, F. N., Gunduz, O., Agathopoulos, S., Öveçoğlu, M. L., & Kayali, E. S. (2007). Sintering Effect on Mechanical Properties of Composites Made of Bovine Hydroxyapatite (BHA) and Commercial Inert Glass (CIG). Key Engineering Materials, 330– 332, 189–192.
  • [24] Erkmen, Z. E., Genç, Y., & Oktar, F. N. (2007). Microstructural and mechanical properties of hydroxyapatite-zirconia composites. Journal of the American Ceramic Society, 90(9), 2885–2892.
  • [25] Göller, G., & Oktar, F. N. (2002). Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Materials Letters, 56(3), 142–147.
  • [26] Mucalo, M. R. (2015). 14 - Animal-bone derived hydroxyapatite in biomedical applications. In M. Mucalo (Ed.), Hydroxyapatite (Hap) for Biomedical Applications (pp. 307–342). Woodhead Publishing.
  • [27] Kürkcü, M., Benlidayı, M. E., Özsoy, S., Özyeğin, L. S., Oktar, F. N., & Kurtoğlu, C. (2008). Histomorphometric evaluation of implants coated with enamel or dentine derived fluoridesubstituted apatite. Journal of Materials Science: Materials in Medicine, 19(1), 59–65.
  • [28] Rocha, J., Lemos, A. F., Sanjeevi, K., Agathopoulos, S., & Ferreira, J. (2005). Hydroxyapatite Scaffolds Hydrothermally Grown from Aragonitic Cuttlefish Bones. Journal of Materials Chemistry, 15.
  • [29] Anderson, I., Mucalo, M., Johnson, G., & Lorier, M. A. (2000). The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part III. Journal of Materials Science. Materials in Medicine, 11, 743–749.
  • [30] Kannan, S., Goetz-Neunhoeffer, F., Neubauer, J., & Ferreira, J. M. F. (2008). Ionic substitutions in biphasic hydroxyapatite and $β$-tricalcium phosphate mixtures: Structural analysis by rietveld refinement. Journal of the American Ceramic Society, 91(1), 1–12.
APA Sengor M (2021). Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. , 116 - 121. 10.7240/jeps.771433
Chicago Sengor Mustafa Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. (2021): 116 - 121. 10.7240/jeps.771433
MLA Sengor Mustafa Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. , 2021, ss.116 - 121. 10.7240/jeps.771433
AMA Sengor M Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. . 2021; 116 - 121. 10.7240/jeps.771433
Vancouver Sengor M Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. . 2021; 116 - 121. 10.7240/jeps.771433
IEEE Sengor M "Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2." , ss.116 - 121, 2021. 10.7240/jeps.771433
ISNAD Sengor, Mustafa. "Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2". (2021), 116-121. https://doi.org/10.7240/jeps.771433
APA Sengor M (2021). Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. International journal of advances in engineering and pure sciences (Online), 33(1), 116 - 121. 10.7240/jeps.771433
Chicago Sengor Mustafa Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. International journal of advances in engineering and pure sciences (Online) 33, no.1 (2021): 116 - 121. 10.7240/jeps.771433
MLA Sengor Mustafa Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. International journal of advances in engineering and pure sciences (Online), vol.33, no.1, 2021, ss.116 - 121. 10.7240/jeps.771433
AMA Sengor M Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. International journal of advances in engineering and pure sciences (Online). 2021; 33(1): 116 - 121. 10.7240/jeps.771433
Vancouver Sengor M Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2. International journal of advances in engineering and pure sciences (Online). 2021; 33(1): 116 - 121. 10.7240/jeps.771433
IEEE Sengor M "Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2." International journal of advances in engineering and pure sciences (Online), 33, ss.116 - 121, 2021. 10.7240/jeps.771433
ISNAD Sengor, Mustafa. "Microstructure and Mechanical Properties of Composites of BovineDerived Hydroxyapatite (BHA) Reinforced with MgF2". International journal of advances in engineering and pure sciences (Online) 33/1 (2021), 116-121. https://doi.org/10.7240/jeps.771433