Yıl: 2019 Cilt: 5 Sayı: 3 Sayfa Aralığı: 123 - 137 Metin Dili: İngilizce İndeks Tarihi: 24-10-2021

CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL

Öz:
In this study, forced convection flow and heat transfer characteristics of TiO2/water nanofluid flow with different nanoparticle volume fractions (1.0%, 2.0%, 3.0% and 4.0%) in semi circular cross sectioned microchannel was numerically investigated. The three dimensional study was conducted under steady state laminar flow condition where Reynolds number changing from 100 to 1000. CFD model has been generated by using ANSYS FLUENT 15.0 software based on finite volume method. The flow was under hydrodynamically and thermally developing flow condition. Uniform surface heat flux boundary condition was applied at the bottom surface of the micro channel. The average and local Nusselt number and Darcy friction factor values were obtained using numerical results. Also, the effects of using nanofluid on local values of Nusselt number and Darcy friction factor were investigated. Numerical results indicate that the increasing of nanoparticle volume fraction of nanofluid, the average Nusselt number increases; however, there is no significant variation in average Darcy friction factor.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Guobing, Z., Shi – Chune, Y. (2011). Effect of surface roughness on laminar liquid flow in micro – channels, Applied Thermal Engineering, 31(2-3), 228 – 234.
  • [2] Shah, R. K.., London, A. L. (1978). Laminar flow forced convection in ducts, Academic Press, New York.
  • [3] Kakaç, S., Shah, R. K., Aung W. (1987). Handbook of single – phase convective heat transfer, John Wiley and Sons.
  • [4] Kakaç, S., Liu H. (1998). Heat exchanger selection, rating and thermal design, CRC Press, USA.
  • [5] Berbish, N. S., Moawed, M., Ammar M. (2011). Heat transfer and friction factor of turbulent flow through a horizontal semi circular duct, Heat and Mass Transfer, 47(4) 377 384.
  • [6] Manglik, R. M., Bergles, A. E. (1998). Laminar flow heat transfer in a semi circular duct with uniform wall temperature, International Journal of Heat and Mass Transfer, 31 (3) 625 636.
  • [7] Arslan, K. (2014). Three dimensional numerical investigation of turbulent flow and heat transfer inside a horizontal semi circular cross sectioned duct, 18(4), 1145 1158.
  • [8] Languri, E. M., Hooman, K. (2011). Slip flow convection in a microchannel with semi circular cross section, International Communications in Heat and Mass Transfer, 38(2), 138 143.
  • [9] Geyer, P. E., Fletcher, D. F., Haynes, B. S. (2007). Laminar flow and heat transfer in a periodic trapezoidal channel with semi circular cross section, International Journal of Heat and Mass Transfer, 50(17 18), 3471 3480.
  • [10] Hussein, A. M., Sharma, K. V., Bakar, R. A., Kadirgama K. (2013). The effect of cross sectional area of tube on friction factor and heat transfer nanofluid turbulent flow, International Communications in Heat and Mass Transfer, 47, 49 55.
  • [11] Duangthongsuk, W., Wongwises, S. (2009). Heat transfer enhancement and pressure drop characteristics of TiO2 water nanofluid in a double tube counter flow heat exchanger, International Journal of Heat and Mass Transfer, 52(7 8), 2059 2067.
  • [12] Kayhani, M. H., Soltanzadeh, H., Heyhat, M. M., Kowsary, F. (2012). Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid, International Communications in Heat and Mass Transfer, 39(3), 456 462.
  • [13] Moraveji, M. K., Ardehali, R. M., Jam, A. (2013). CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini channel heat sink, International Communications in Heat and Mass Transfer, 40, 58 66.
  • [14] Çelen, A., Kayacı, N., Çebi, A., Demir, H., Dalkılıç, A. S., Wongwises, S. (2014). Numerical investigation for the calculation of TiO2 water nanofluids’ pressure drop in plain and enhanced pipes, International Communications in Heat and Mass Transfer, 53, 98 108.
  • [15] Azmi, W. H., Sharma, K. V., Sarma, P. K., Mamat, R., Najafi, G. (2014). Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube, International Communications in Heat and Mass Transfer, 59, 30 38.
  • [16] Arani, A. A., Amani, J. (2012). Experimental study on the effect of TiO2 water nanofluid on heat transfer and pressure drop, Experimental Thermal and Fluid Science, 42, 107 115.
  • [17] Arani, A. A., Amani, J. (2013). Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2 water nanofluid, Experimental Thermal and Fluid Science, 44, 520 533.
  • [18] Peng, W., Minli, B., Jizu, L., Chengzi, H., Yuyan, W. (2014). Numerical investigation on the turbulent flow characteristic of nanofluids in a horizontal tube, Numerical Heat Transfer Part A: Applications, 66, 646 668.
  • [19] Kahani, M., Heris, S. Z., Mousavi, S. M. (2014). Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through a helical coiled tube, Heat and Mass Transfer, 50, 1563 1573.
  • [20] Uysal, C., Arslan, K., Kurt, H. (2016). A Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of ZnO Ethylene Glycol Nanofluid in Rectangular Microchannels, Strojniški vestnik Journal of Mechanical Engineering 62(10), 603 613.
  • [21] Makinde, O. D. (2013). Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate. International Journal of Numerical Methods for Heat and Fluid flow, 23(8), 1291 1303.
  • [22] Khamis, S., Makinde, O. D., Nkansah Gyekye Y. (2015). Buoyancy driven heat transfer of water based nanofluid in a permeable cylindrical pipe with Navier slip through a saturated porous medium. Journal of Porous Media, 18(12), 1169 1180.
  • [23] Bejan, A. (2004). Convective Heat Transfer, Wiley, New York.
  • [24] Incropera, F. P., DeWitt, D. P. (2002). Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
  • [25] Çengel, Y. A. (1988). Heat Transfer a Practical Approach, McGraw Hill New York.
  • [26] Hausen, H., (1959), “Neue Gleichungen fur die Wameiibertragung bei Freieroder Erzwungerner Stromung,” Allg. Warmetchn., 9, 75 79.
  • [27] Li, C. H., Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics, 99, 1 8.
  • [28] Verma, S. K., Tiwari, A. K. (2015). Progress of nanofluid application in solar collectors: A review, Energy Conversion and Management, 100, 3324 346
  • [29] Zhang, X., Gu, H., Fujii, M. (2006). Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids, International Journal of Thermophysics, 27(2), 569 580
  • [30] Jung, J.Y., Oh, H. S. Kwak, H. Y. (2009). Forced convective heat transfer of nanofluids in microchannels. International Journal of Heat and Mass Transfer, 52, 466 472.
  • [31] Ekiciler, R., Arslan, K. (2018) CuO/water Nanofluid flow over microscale backward facing step and heat transfer performance analysis. Heat Transfer Research 49:1489 1505.
  • [32] Kaya, H., Ekiciler, R., Arslan, K. (2018) Entropy generation analysis of forced convection flow in a semi circular shaped microchannel with TiO2/water nanofluid. Heat Transfer Research doi: 10.1615/HeatTransRes.2018025888.
APA KAYA H, Ekiciler R, ARSLAN K (2019). CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. , 123 - 137.
Chicago KAYA H.,Ekiciler Recep,ARSLAN Kamil CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. (2019): 123 - 137.
MLA KAYA H.,Ekiciler Recep,ARSLAN Kamil CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. , 2019, ss.123 - 137.
AMA KAYA H,Ekiciler R,ARSLAN K CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. . 2019; 123 - 137.
Vancouver KAYA H,Ekiciler R,ARSLAN K CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. . 2019; 123 - 137.
IEEE KAYA H,Ekiciler R,ARSLAN K "CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL." , ss.123 - 137, 2019.
ISNAD KAYA, H. vd. "CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL". (2019), 123-137.
APA KAYA H, Ekiciler R, ARSLAN K (2019). CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. Journal of Thermal Engineering, 5(3), 123 - 137.
Chicago KAYA H.,Ekiciler Recep,ARSLAN Kamil CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. Journal of Thermal Engineering 5, no.3 (2019): 123 - 137.
MLA KAYA H.,Ekiciler Recep,ARSLAN Kamil CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. Journal of Thermal Engineering, vol.5, no.3, 2019, ss.123 - 137.
AMA KAYA H,Ekiciler R,ARSLAN K CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. Journal of Thermal Engineering. 2019; 5(3): 123 - 137.
Vancouver KAYA H,Ekiciler R,ARSLAN K CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL. Journal of Thermal Engineering. 2019; 5(3): 123 - 137.
IEEE KAYA H,Ekiciler R,ARSLAN K "CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL." Journal of Thermal Engineering, 5, ss.123 - 137, 2019.
ISNAD KAYA, H. vd. "CFD ANALYSIS OF LAMINAR FORCED CONVECTIVE HEAT TRANSFER FOR TiO2/WATER NANOFLUID IN A SEMI CIRCULAR CROSS SECTIONED MICRO CHANNEL". Journal of Thermal Engineering 5/3 (2019), 123-137.