Yıl: 2019 Cilt: 5 Sayı: 4 Sayfa Aralığı: 251 - 270 Metin Dili: İngilizce İndeks Tarihi: 28-10-2021

DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY

Öz:
Free convection and radiation comprise the heat transfer mechanisms through which a hydronic householdradiator co nveys heat from its surface to air and surrounding surfaces. It should also be noted that their performancecould be enhanced by improving surface geometries as well as increasing temperature levels. In the present study,heat transfer rates and convective heat transfer coefficients occurring through the investigated radiators, werenumerically examined. To this end, radiators at two different dimensions having two different geometric shapes weredrawn and analyzed in the program Ansys 17. The heat transfer rates obtained from the program were validated viaradiator producer catalogues. Furthermore, the influence of parameters, such as water velocity in the radiators andthus mass flow rate, temperature difference between water inlet and outlet and also betw een radiator surface andsurrounding air on convective heat transfer coefficient over radiator, were scrutinized.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Calisir, T., Yazar, H. O., Baskay a, S. and Y ucedag, S ( Experimental and numerical prediction of flow field around a panel radiator. International Scientific Journal J ournal of Environmental Science 5
  • [2] Embaye, M., Al Dadah, R. K., and Mahmoud, S. (2016). Numerical evaluation of indoor thermal comfort and energy saving by operating the heating panel radiator at different flow strategies. Energy and Buildings, 121, 298 308.
  • [3] R J. Ladumor, V. Y Gajjar, and K.K.Araniya, ( A review p aper on analysis of automobile r adiato r. I nternational Conference on Multidisciplinary Research & Practice 1 388 393. [4]
  • Calisir, T., Baskaya, S., Yazar, H. O., and Yucedag, S. (2015). Parametric numerical investigation of heat transfer from convectors to improve efficiency of panel radiators . In ICHMT Digital Library Online . Begel House Inc [5]
  • Kayastha, K. S. (2015). CFD simulation of heat transfer analysis of automobile radiator using helical tubes. International journal of engineering research and development, 11(1), 24 35 [6]
  • Embaye, M., Al Dadah, R. K., and Mahmoud, S. (2015). Thermal performance of hydronic radiator with flow pulsation Numerical investigation. Applied Thermal Engineering, 80, 109 117
  • [7] Johansson, P. O., and Wollerstrand, J. (2010). Heat output from space heating radiato r with add on fan blowers. In Excerpt from Proceedings the COMSOL Conference .
  • [8] Shi , H. L., Liu, Y., Shao, Y. Z., and Jin, Y. A. (2015, June). Optimization design of plate type radiator. In International Conference on Computer Information Systems and In dustrial Applications. Atlantis Press.
  • [9] Myhren, J. A., and Holmberg, S. (2009). Design considerations with ventilation radiators: Comparisons to traditional two panel radiators. Energy and buildings, 41(1), 92 100.
  • [10] Sarbu, I., and Sebarchievici, C. (2015). A study of the performances of low temperature heating systems. Energy Efficiency, 8(3), 609 627.
  • [11] Aydar, E., and Ekmekci, I. (2012). Thermal efficiency estimation of the panel type radiators with CFD analysis. Journal of Thermal Science and Te chnology, 32, 63 71.
  • [12] Salvio Chacko, D., Shome, B., Kumar, V., Agarwal, A. K., and Katkar, D. R. Numerical Simulation for Improving Radiator Efficiency by Air Flow Optimization.
  • [13] Sevilgen, G., and Kilic, M. (2011). Numerical analysis of air flow, h eat transfer, moisture transport and thermal comfort in a room heated by two panel radiators. Energy and Buildings, 43(1), 137 146.
  • [14] Shati, A. K. A., Blakey, S. G., & Beck, S. B. M. (2011). The effect of surface roughness and emissivity on radiator out put. Energy and buildings, 43(2 3), 400 406.
  • [15] Arslanturk, C., and Ozguc, A. F. (2006). Optimization of a central heating radiator. Applied energy, 83(11), 1190 1197.
  • [16] Menéndez Díaz, A., Ordóñez Galá n, C., Bouza Rodríguez, J. B., and Fernández Calle ja, J. J. (2014). Thermal analysis of a stoneware panel covering radiators. Applied energy, 131, 248 256.
  • [17] Brady, L., Abdellatif, M., Cullen, J., Maddocks, J., and Al Shamma’a, A. (2016). An investigation into the effect of decorative covers on the hea t output from LPHW radiators. Energy and Buildings, 133, 414 422.
  • [18] Kılıç, M., Sevilgen, G., and Mutlu, M. (2014). Three Dimensional Numerical Analysis of Thermal Output of a Steel Panel Radiator. In Progress in Exergy, Energy, and the Environment (pp. 585 593). Springer, Cham
  • [19] Jahanbin, A., and Zanchini, E. (2016). Effects of position and temperature gradient direction on the performance of a thin plane radiator. Applied Thermal Engineering, 105, 467 473.
  • [20] Beck, S. B., Blakey, S. G., and Chung, M. C. (2001). The effect of wall emissivity on radiator heat output. Building Services Engineering Research and Technology, 22(3), 185 194.
  • [21] Khalifa, A. J. N. (2001). Natural convective heat transfer coefficient a review: I. Isolated vertical and horizontal surfaces. Energy conversion and management, 42(4), 491 504
  • [22] Khalifa, A. J. N. (2001). Natural convective heat transfer coefficient a r eview: II. Surfaces in two and three dimensional enclosures. Energy Conversion and Management, 42(4), 505 517.
  • [23] Demir, H., Dalkilic, A. S., Küre kci, N. A., Duangthongsuk, W., and Wongwises, S. (2011). Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double tube counter flow heat exchanger. International Communications in Heat and Mass Transfer, 38(2), 218 228.
  • [24] Incropera, F. P., and DeWitt, D. P. (1996). Fundamentals of Heat and Mass Transfer. 4th edn John Wiley & Sons. New York.
APA Dalkilic A, Acikgoz O, EKICI E, Wongwises S (2019). DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. , 251 - 270.
Chicago Dalkilic Ahmet Selim,Acikgoz Ozgen,EKICI EKREM,Wongwises Somchai DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. (2019): 251 - 270.
MLA Dalkilic Ahmet Selim,Acikgoz Ozgen,EKICI EKREM,Wongwises Somchai DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. , 2019, ss.251 - 270.
AMA Dalkilic A,Acikgoz O,EKICI E,Wongwises S DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. . 2019; 251 - 270.
Vancouver Dalkilic A,Acikgoz O,EKICI E,Wongwises S DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. . 2019; 251 - 270.
IEEE Dalkilic A,Acikgoz O,EKICI E,Wongwises S "DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY." , ss.251 - 270, 2019.
ISNAD Dalkilic, Ahmet Selim vd. "DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY". (2019), 251-270.
APA Dalkilic A, Acikgoz O, EKICI E, Wongwises S (2019). DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. Journal of Thermal Engineering, 5(4), 251 - 270.
Chicago Dalkilic Ahmet Selim,Acikgoz Ozgen,EKICI EKREM,Wongwises Somchai DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. Journal of Thermal Engineering 5, no.4 (2019): 251 - 270.
MLA Dalkilic Ahmet Selim,Acikgoz Ozgen,EKICI EKREM,Wongwises Somchai DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. Journal of Thermal Engineering, vol.5, no.4, 2019, ss.251 - 270.
AMA Dalkilic A,Acikgoz O,EKICI E,Wongwises S DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. Journal of Thermal Engineering. 2019; 5(4): 251 - 270.
Vancouver Dalkilic A,Acikgoz O,EKICI E,Wongwises S DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY. Journal of Thermal Engineering. 2019; 5(4): 251 - 270.
IEEE Dalkilic A,Acikgoz O,EKICI E,Wongwises S "DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY." Journal of Thermal Engineering, 5, ss.251 - 270, 2019.
ISNAD Dalkilic, Ahmet Selim vd. "DETERMINATION OF SOM E DOMESTIC RADIATORS’ THERMAL CAPACITY NUMERICALLY". Journal of Thermal Engineering 5/4 (2019), 251-270.