Yıl: 2021 Cilt: 28 Sayı: 1 Sayfa Aralığı: 163 - 170 Metin Dili: Türkçe DOI: 10.17343/sdutfd.718412 İndeks Tarihi: 01-11-2021

İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ

Öz:
Bu derleme, irisin hakkındaki mevcut bilgileri ve irisinin vasküler tonusa aracılık etmedeki etkin rolünüözetleme çabasıdır. Egzersiz kronik, bulaşıcı olmayan hastalıkların, tip 2 diyabetin ve özellikle kardiyovasküler hastalıkların önlenmesinde bir dayanaknoktasıdır. Egzersiz/fiziksel aktiviteye yanıt olaraküretilen yeni bir miyokin olan irisin, beyaz yağ dokusunun ‘esmerleşmesini’ teşvik ederek enerji harcamalarında artışa neden olur. Bu hormonun ilk tanımında, öncül fibronektin tip III alan içeren protein5’ten ayrılan irisinin dolaşımdaki yüksek seviyeleri,insülin direncinin azalmasıyla düzelmiş glikoz homeostazı ile ilişkilendirilmiştir. İrisinin insanda farklıhedef doku veya organlar üzerindeki etkileri, sağlığın desteklenmesi veya çeşitli metabolik hastalıklarındüzenlenmesinde fizyolojik işlevlerini ortaya çıkarmıştır. İrisinin işlevinin anlaşılmasının birçok hastalıkve gelişiminin anlaşılmasında anahtar olabileceğineinanılmaktadır. İrisinin metabolik düzenleme, enerjiharcaması ve glikoz homeostazında kilit bir rol oynadığı gösterilmiştir. Hem hayvanlarda hem de insanlarda yapılan çeşitli çalışmalardan elde edilen yenibulgular, irisinin vasküler aktiviteyi modüle etmek gibibaşka olumlu etkilere de sahip olabileceğini ve böylece egzersiz kaynaklı birçok sağlık yararına aracılık ettiğini göstermektedir. Deneysel bulgular, irisininhipertansiyon gibi anormal vazokonstriksiyona bağlıhastalıkların tedavisinde yararlı bir ajan olabileceğinidüşündürmektedir. Bununla birlikte, irisinin rolü ve işlevi hakkındaki veriler tartışmaya yol açmıştır. Hipertansiyon tedavisinde irisinin etkinliğini belirlemek içindaha ayrıntılı mekanizma çalışmaları ve in vivo çalışmalar gereklidir. İrisinin etki mekanizmalarının anlaşılmasındaki bir başka güçlü sınırlama ise, insanlardave hayvanlarda bugüne kadar halen tanımlanamayanirisin reseptörü hakkındaki bilgi eksikliğidir.
Anahtar Kelime:

IRISIN AND ITS EFFECTS ON VASCULAR CONTRACTILITY

Öz:
This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating vascular tone. Exercise is a mainstay of prevention of chronic, non-communicable diseases, type 2 diabetes and cardiovascular disease in particular. Irisin, a novel myokine produced in response to exercise/physical activity, leads to increased energy expenditure by stimulating the ‘browning’ of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. It is believed that understanding irisin’s function may be the key to comprehend many diseases and their development. It has been demonstrated that irisin plays a key role in metabolic regulation, energy expenditure and glucose homeostasis. New findings from various studies carried out in both animals and humans suggest that irisin might also have other favorable effects, such as modulating vascular activity, thus mediating many exercise-induced health benefits. Experimental findings suggest that irisin might be a useful agent for treating abnormal vasoconstriction-related diseases such as hypertension. However, data on the role and function of irisin have prompted controversy. More detailed mechanism studies and in vivo studies are necessary to establish the efficacy of irisin for treating hypertension. Another strong limitation to the understanding of irisin mechanisms of action is the lack of knowledge about its receptor, which until now remains unidentified in humans and in animals.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Maciorkowska M, Musiałowska D, Małyszko J. Adropin and irisin in arterial hypertension, diabetes mellitus and chronic kidney disease. Adv Clin Exp Med. 2019 Nov;28(11):1571-1575.
  • 2. Lusis AJ. Atherosclerosis. Nature 2000;407(6801):233-41.
  • 3. Peters SA, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart (British Cardiac Society) 2012;98(3):177-84.
  • 4. Stefano R, Massimiliano C, Marina C, Rossella M, Chiara P, Alessio L, et al. A score including ADAM17 substrates correlates to recurring cardiovascular event in subjects with atherosclerosis. Atherosclerosis 2015;239(2):459-64.
  • 5. Libby P. Inflammation in atherosclerosis. Nature 2002;420(6917):868-74.
  • 6. Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annual Review of Pathology 2009;4:71-95.
  • 7. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007;115(10):1285-95.
  • 8. Chen CH, Jiang W, Via DP, Luo S, Li TR, Lee YT, et al. Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation 2000;101(2):171-7.
  • 9. Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on A. Inflammation in atherosclerosis: from pathophysiology to practice. Journal of the American College of Cardiology 2009;54(23):2129-38.
  • 10. Pedersen BK, Akerström TCA, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol 2007;103(3):1093-8.
  • 11. Strasser B. Physical activity in obesity and metabolic syndrome. Annals of the New York Academy of Sciences 2013;1281:141- 59.
  • 12. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012;8(8):457-65.
  • 13. Boström, P, Wu, J, Jedrychowski, MP, Korde, A, Ye, L, Lo, JC et al. A PGC1-α-dependent myokine that drives brownfat-like development of white fat and thermogenesis. Nature 2012;481:463-8.
  • 14. Schumacher, MA, Chinnam, N, Ohashi, T, Shah, RS, Erickson, HP. The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J Biol Chem 2013;288(47):33738-44.
  • 15. Norheim, F, Langleite, TM, Hjorth, M, Holen, T, Kielland, A, Stadheim, HK, et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 2014;281(3):739-49.
  • 16. Zhang, Y, Li, R, Meng, Y, Li, S, Donelan, W, Zhao, Y, et al. Irisin stimulates browning of white adipocytes through mitogenactivated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014;63(2):514-25.
  • 17. Liu, S, Du, F, Li, X, Wang, M, Duan, R, Zhang, J, et al. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PloS One, 2017;12(4): e0175498.
  • 18. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008;454(7203):463-9.
  • 19. Austin S, St-Pierre J. PGC1alpha and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012;125(Pt 21):4963-71.
  • 20. Novelle MG, Contreras C, Romero-Pico A, Lopez M, Dieguez C. Irisin, two years later. Int J Endocrinol 2013, 2013:746281.
  • 21. Brenmoehl J, Albrecht E, Komolka K, Schering L, Langhammer M, Hoeflich A, et al. Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise. Int J Biol Sci 2014;10(3):338-49.
  • 22. Xu, B. BDNF (I)rising from exercise. Cell Metab, 2013;18(5):612- 4.
  • 23. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013;98(4):E769- 78.
  • 24. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 2012;61(12):1725-38.
  • 25. Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience 2013;240:155-62.
  • 26. Aydin S, Kuloglu T, Yilmaz M, Kalayci M, Sahin I, Cicek D. Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running. Peptides 2013;50:13-8.
  • 27. Aydin S, Kuloglu T, Eren MN, Celik A, Yilmaz M, Kalayci M, et al. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle. Peptides 2014;52:68-73.
  • 28. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Crujeiras AB, et al. FNDC5/irisin is not only a myokine but also an adipokine. PloS One 2013;8(4):e60563.
  • 29. Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 2014;592(5):1091-107.
  • 30. Chen, N, Li, Q, Liu, J, Jia, S. Irisin, an exercise-induced myokine as a metabolic regulator: an updated narrative review. Diabetes Metab Res Rev 2016;32(1):51-9.
  • 31. Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab 2013;98(12):4899-907.
  • 32. Hofmann T, Elbelt U, Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis--a critical update. Peptides 2014;54:89-100.
  • 33. Rizk FH, Elshweikh SA, Abd El-Naby AY. Irisin levels in relation to metabolic and liver functions in Egyptian patients with metabolic syndrome. Can J Physiol Pharmacol 2016;94(4):359-62.
  • 34. Kraemer RR, Shockett P, Webb ND, Shah U, Castracane VD. A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Horm Metab Res 2014;46(2):150-4.
  • 35. Hecksteden A, Wegmann M, Steffen A, Kraushaar J, Morsch A, Ruppenthal S, et al. Irisin and exercise training in humans - results from a randomized controlled training trial. BMC Med 2013;11:235.
  • 36. Palacios-González, B, Vadillo-Ortega, F, Polo-Oteyza, E, Sánchez, T, Ancira-Moreno, M., Romero-Hidalgo, S, et al. Irisin levels before and after physical activity among school-age children with different BMI: a direct relation with leptin. Obesity 2015;23(4):729-32.
  • 37. Tsuchiya, Y, Ando, D, Takamatsu, K, Goto, K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism 2015;64(9):1042-50.
  • 38. Daskalopoulou, SS, Cooke, AB, Gomez, YH, Mutter, AF, Filippaios, A, Mesfum, ET, et al. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 2014;171(3):343-52.
  • 39. Xiang L, Xiang G, Yue L, Zhang J, Zhao L. Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis 2014;235(2):328-33.
  • 40. Hou N, Han F, Sun X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin Endocrinol (Oxf) 2015;83(3):339-43.
  • 41. Zhang W, Chang L, Zhang C, Zhang R, Li Z, Chai B, et al. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc Drugs Ther 2015;29(2):121-7.
  • 42. Han F, Zhang S, Hou N, Wang D, Sun X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Physiol Heart Circ Physiol 2015;309(9):H1501-8.
  • 43. Jiang M, Wan F, Wang F, Wu Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem Biophys Res Commun 2015;468(4):832-6.
  • 44. Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPKAkt-eNOS-NO pathway in the spontaneously hypertensive rat. J Am Heart Assoc 2016;5(11):e003433.
  • 45. Hou N, Liu Y, Han F, Wang D, Hou X, Hou S. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice. J Mol Cell Cardiol 2016;99:188-96.
  • 46. Li Y, Xu M, Hu M, Zhang H, Tan X, Li Q. TRPV4 is involved in irisin-induced endothelium-dependent vasodilation. Biochem and Biophys Res Commun 2017;495(1):41-5.
APA DEMİREL S, Sahinturk S, OZYENER F (2021). İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. , 163 - 170. 10.17343/sdutfd.718412
Chicago DEMİREL Sadettin,Sahinturk Serdar,OZYENER FADIL İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. (2021): 163 - 170. 10.17343/sdutfd.718412
MLA DEMİREL Sadettin,Sahinturk Serdar,OZYENER FADIL İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. , 2021, ss.163 - 170. 10.17343/sdutfd.718412
AMA DEMİREL S,Sahinturk S,OZYENER F İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. . 2021; 163 - 170. 10.17343/sdutfd.718412
Vancouver DEMİREL S,Sahinturk S,OZYENER F İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. . 2021; 163 - 170. 10.17343/sdutfd.718412
IEEE DEMİREL S,Sahinturk S,OZYENER F "İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ." , ss.163 - 170, 2021. 10.17343/sdutfd.718412
ISNAD DEMİREL, Sadettin vd. "İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ". (2021), 163-170. https://doi.org/10.17343/sdutfd.718412
APA DEMİREL S, Sahinturk S, OZYENER F (2021). İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi, 28(1), 163 - 170. 10.17343/sdutfd.718412
Chicago DEMİREL Sadettin,Sahinturk Serdar,OZYENER FADIL İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi 28, no.1 (2021): 163 - 170. 10.17343/sdutfd.718412
MLA DEMİREL Sadettin,Sahinturk Serdar,OZYENER FADIL İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi, vol.28, no.1, 2021, ss.163 - 170. 10.17343/sdutfd.718412
AMA DEMİREL S,Sahinturk S,OZYENER F İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi. 2021; 28(1): 163 - 170. 10.17343/sdutfd.718412
Vancouver DEMİREL S,Sahinturk S,OZYENER F İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi. 2021; 28(1): 163 - 170. 10.17343/sdutfd.718412
IEEE DEMİREL S,Sahinturk S,OZYENER F "İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ." Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi, 28, ss.163 - 170, 2021. 10.17343/sdutfd.718412
ISNAD DEMİREL, Sadettin vd. "İRİSİN VE VASKÜLER KONTRAKTİLİTE ÜZERİNE ETKİLERİ". Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi 28/1 (2021), 163-170. https://doi.org/10.17343/sdutfd.718412