Yıl: 2021 Cilt: 25 Sayı: 4 Sayfa Aralığı: 371 - 378 Metin Dili: İngilizce DOI: 10.29228/jrp.27 İndeks Tarihi: 07-11-2021

Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs

Öz:
The number of studies conducted with liposomes to reduce side effects in systemic administration of chemotherapeutic agents is increasing day by day. One of these chemotherapeutic agents, 5-Fluorouracil (5-FU) is a good candidate for encapsulating into the liposomes; however, it has been difficult to obtain liposomal 5-FU with high encapsulation efficiency. The various factors such as preparation method (thin film hydration method and passive loading with small volume incubation method), drug amount (10 mg, 7.5 mg, and 5 mg), hydration volume (3.5 mL and 2 ml), and incubation volume (2 mL and 1 mL) were investigated to optimize the formulation of 5-FU encapsulated liposomes. Liposomes were characterized according to particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency (EE%). The in vitro release study was carried out using Franz diffusion cell. Based on the optimization of formulation, the average drug EE% and the mean particle size of 5-FU-loaded liposomes were found to be 25% and 188.6 nm. In vitro drug release of 5-FU-loaded liposomes (SVI-4) presented a biphasic release of 5-FU, and this behavior was in accordance with the first-order equation. According to the results, 5-FU can be effectively loaded into liposomes prepared by passive loading with small volume incubation method.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and Radiation Therapy: Current Advances and Future Directions. Int J Med Sci. 2012; 9(3): 193–199.
  • [2] Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J Pharm Sci. 2013; 8(2): 81-87. [CrossRef]
  • [3] Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release. 2020; 318: 256-263. [CrossRef]
  • [4] Sarafa S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol. 2020; 56: 101549. [CrossRef]
  • [5] Yang Z, Liu J, Gao J, Chen S, Huang G. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int J Pharm. 2015; 495(1): 508-515. [CrossRef]
  • [6] Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch Pharm Res. 2018; 41(1): 1-13. [CrossRef]
  • [7] Riviere K, Kieler-Ferguson HM, Jerger K, Szoka Jr FC. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J Control Release. 2011; 153(3): 288-296. [CrossRef]
  • [8] Eloy JO, Claro de Souza M, Petrilli R, Barcellos JP, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces. 2014; 123: 345-363. [CrossRef]
  • [9] Varona S, Martín A, Cocero MJ. Liposomal Incorporation of Lavandin Essential Oil by a Thin-Film Hydration Method and by Particles from Gas-Saturated Solutions. Ind Eng Chem Res. 2011; 50: 2088-2097. [CrossRef]
  • [10] Xu H, Paxton J, Lim J, Li Y, Zhang W, Duxfield L, Wu Z. Development of high-content gemcitabine PEGylated liposomes and their cytotoxicity on drug-resistant pancreatic tumour cells. Pharm Res. 2014; 31(10): 2583-2592. [CrossRef]
  • [11] Bisht S, Maitra A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4): 415-425. [CrossRef]
  • [12] Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effect. Adv Drug Deliv Rev. 2011; 63(3): 161-169. [CrossRef]
  • [13] Caracciolo, G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale. 2018;10(9): 4167-4172. [CrossRef]
  • [14] Xu X, Khan MA, Burgess DJ. Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm. 2012;423(2): 410-418. [CrossRef]
  • [15] Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Simonoska M, Calis S, Trajkovic-Jolevska S, Hincal AA. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm. 2005; 291(1-2): 79-86. [CrossRef]
  • [16] Sabbagh CA, Tsapis N, Novell A, Calleja-Gonzalez P, Escoffre JM, Bouakaz A, Chacun H, Denis S, Vergnaud J, Gueutin C, Fattal E. Formulation and pharmacokinetics of thermosensitive stealth® liposomes encapsulating 5- Fluorouracil. Pharm Res. 2015; 32(5): 1585-1603. [CrossRef]
  • [17] Mishra GP, Kinser R, Wierzbicki IH, Alany RG, Alani AWG. In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. Eur J Pharm Biopharm. 2014; 88(2): 397-405. [CrossRef]
  • [18] Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015; 5(1): 79-88. [CrossRef]
  • [19] Alomrani A, Badran M, Harisa GI, ALshehry M, Alhariri M, Alshamsan A, Alkholief M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm J. 2019; 27(5): 603-611. [CrossRef]
  • [20] Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J Biomater Sci Polym Ed. 2020; 31(9): 1107-1126. [CrossRef]
  • [21] AlQahtani SA, Harisa GI, Badran MM, AlGhamdi KM, Kumar A, Salem-Bekhit MM, Ahmad SF, Alanazi FK. Nanoerythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2019;47(1): 989-996. [CrossRef]
  • [22] Na YG, Jeon SH, Byeon JJ, Kim MK, Lee HK, Cho CW. Application of statistical design on the early development of sustained-release tablet containing ivy leaf extract. J Drug Deliv Sci Technol. 2019; 54: 101319. [CrossRef]
  • [23] Ye S, Jiang L, Su C, Zhu Z, Wen Y, Shao W. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol. 2019; 133: 148-155. [CrossRef]
  • [24] Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol. 2018; 23(1): 76-86. [CrossRef]
  • [25] Zorec B, Zupančič Š, Kristl J, Pavšelj N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur J Pharm Biopharm. 2018; 127: 387-397. [CrossRef]
  • [26] Tamam H, Park J, Gadalla HH, Masters AR, Abdel-Aleem JA, Abdelrahman SI, Abdelrahman AA, Lyle LT, Yeo Y. Development of Liposomal Gemcitabine with High Drug Loading Capacity. Mol Pharm. 2019; 16(7): 2858-2871. [CrossRef]
  • [27] Chaudhury A, Das S, Lee RFS, Tan KB, Ng WK, Tan RBH, Chiu GNC. Lyophilization of cholesterol-free PEGylated liposomes and its impact on drug loading by passive equilibration. Int J Pharm. 2012; 430(1-2): 167-175. [CrossRef]
  • [28] Hinna A, Steiniger F, Hupfeld S, Stein P, Kuntsche J, Brandl M. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. J Liposome Res. 2016; 26(1): 11-20. [CrossRef]
  • [29] Adamczak MI, Martinsen ØG, Smistad G, Hiorth M. Polymer coated mucoadhesive liposomes intended for the management of xerostomia. Int J Pharm. 2017; 527(1-2): 72-78. [CrossRef]
  • [30] Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm. 2018; 548(1): 255-262. [CrossRef]
  • [31] Sanchez-Vazquez B, Lee JB, Strimaite M, Buanz A, Bailey R, Gershkovich P, Pasparakis G, Williams GR. Solid lipid nanoparticles self-assembled from spray dried microparticles. Int J Pharm. 2019; 572: 118784. [CrossRef]
  • [32] Mattos ACd, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM. Polymeric nanoparticles for oral delivery of 5- fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci. 2016; 84: 83-91. [CrossRef]
  • [33] Andrade LM, Reis CF, Maione-Silva L, Anjos JLV, Alonso A, Serpa RC, Marreto RN, Lima EM, Taveira SF. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2014; 88(1): 40-47. [CrossRef]
  • [34] Shah RM, Eldridge DS, Palombo EA, Harding IH. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. Int J Pharm. 2016;515(1-2): 543-554. [CrossRef]
APA Yalcin T, Yetgin C, YILMAZ A (2021). Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. , 371 - 378. 10.29228/jrp.27
Chicago Yalcin Tahir Emre,Yetgin Ceren,YILMAZ Aysel Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. (2021): 371 - 378. 10.29228/jrp.27
MLA Yalcin Tahir Emre,Yetgin Ceren,YILMAZ Aysel Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. , 2021, ss.371 - 378. 10.29228/jrp.27
AMA Yalcin T,Yetgin C,YILMAZ A Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. . 2021; 371 - 378. 10.29228/jrp.27
Vancouver Yalcin T,Yetgin C,YILMAZ A Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. . 2021; 371 - 378. 10.29228/jrp.27
IEEE Yalcin T,Yetgin C,YILMAZ A "Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs." , ss.371 - 378, 2021. 10.29228/jrp.27
ISNAD Yalcin, Tahir Emre vd. "Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs". (2021), 371-378. https://doi.org/10.29228/jrp.27
APA Yalcin T, Yetgin C, YILMAZ A (2021). Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. Journal of research in pharmacy (online), 25(4), 371 - 378. 10.29228/jrp.27
Chicago Yalcin Tahir Emre,Yetgin Ceren,YILMAZ Aysel Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. Journal of research in pharmacy (online) 25, no.4 (2021): 371 - 378. 10.29228/jrp.27
MLA Yalcin Tahir Emre,Yetgin Ceren,YILMAZ Aysel Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. Journal of research in pharmacy (online), vol.25, no.4, 2021, ss.371 - 378. 10.29228/jrp.27
AMA Yalcin T,Yetgin C,YILMAZ A Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. Journal of research in pharmacy (online). 2021; 25(4): 371 - 378. 10.29228/jrp.27
Vancouver Yalcin T,Yetgin C,YILMAZ A Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs. Journal of research in pharmacy (online). 2021; 25(4): 371 - 378. 10.29228/jrp.27
IEEE Yalcin T,Yetgin C,YILMAZ A "Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs." Journal of research in pharmacy (online), 25, ss.371 - 378, 2021. 10.29228/jrp.27
ISNAD Yalcin, Tahir Emre vd. "Development of 5-fluorouracil-loaded nano-sizedliposomal formulation by two methods: Strategies toenhance encapsulation efficiency of hydrophilic drugs". Journal of research in pharmacy (online) 25/4 (2021), 371-378. https://doi.org/10.29228/jrp.27