Yıl: 2021 Cilt: 30 Sayı: 1 Sayfa Aralığı: 7 - 15 Metin Dili: İngilizce İndeks Tarihi: 08-11-2021

Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm

Öz:
This study was undertaken to assess genetic and phenotypic diversity of Turkish okra(Abelmoschus esculentus (L.) Moench) germplasm of 26 landraces including threecultivars (Akköy-41, Kabaklı-11, and Marmara-1) with 34 phenotypic traits and 74 iPBSretrotransposon primers. Leaf-blade size, fruit length, fruit diameter, fruit number perplant, petiole length, plant height, stem diameter, number of stem nodes, and plantgrowth type (degree of branching) were the most important morphological traitscontributing to the variation. Comparison of genotypes with 14 iPBS-retrotransposonprimers yielded 141 bands, 34 of which (24.1%) were polymorphic, with the primer2271 producing the highest (6) bands per primer. Cluster analysis based on phenotypicand molecular markers produced two major groups. Phenotypic based unweightedpair group method with arithmetic mean (UPGMA) dendrogram had 12 sub-groupswith the highest similarity (0.63) between GAN-19/GAN-21 and MGL-6/Akköy-41genotypes. The markers, however, produced a dendrogram with eight subgroups,pairwise genetic similarities ranging from 0.43 to 1.00, where MGL-6 singled out witha similarity value of 0.57. Howbeit, the Mantel test between both dendrograms basedon the similarity matrix was insignificant.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akash, M.W., Shiyab S.M., & Saleh M.I. (2013). Yield and AFLP analyses of inter-landrace variability in okra (Abelmoschus esculentus L.). Life Science Journal, 10(2), 2771-2779. http://www.dx.doi.org/10.7537/marslsj100213.385
  • Aladele, S.E., Ariyo O.J., & De Lapena, R. (2008). Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. African Journal of Biotechnology, 7(10), 1426-1431. https://doi.org/10.5897/AJB08.006
  • Ali, F., Yılmaz, A., Nadeem, M. A., Habyarimana, E., Subaşı, I., Nawaz, M. A., Chaudhary, H. J., Shahid, M. Q., Ercişli, S., Zia, M., Chung, G., & Baloch, F. S. (2019). Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using İPBSretrotransposon markers. PloS One, 14(2), e0211985. https://doi.org/10.1371/journal.pone.0211985
  • Al-Wandawi, H. (1983). Chemical composition of seeds of two okra cultivars. Journal of Agricultural and Food Chemistry, 31(6), 1355-1358. https://doi.org/10.1021/jf00120a051
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using İPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491. https://doi.org/10.3906/tar2001-10
  • Bhatt, J.P., Patel, N.A., Acharya, R.R., & Kathiria, K.B. (2016). Heterosis for yield and its related traits in Okra (Abelmoschus esculentus L. Moench). Electronic Journal of Plant Breeding, 7(1), 189-196. https://doi.org/10.5958/0975-928X.2016.00026.0
  • Chakravarthi, B.K., & Naravaneni, R. (2006). SSR Marker based DNA Fingerprinting and Diversity study in rice (Oriza sativa. L). African Journal of Biotechnology, 5(9), 684 - 688. https://doi.org/10.5897/AJB05.172
  • Datta, P.C., & Naug, A. (1968). A few strains of Abelmoschus esculentus (L.) Moench their karyological in relation to phylogeny and organ development. Beiträge zur Biologie der Pflanzen, 45, 113-126.
  • De Candolle, A. (1886). Origin of cultivated plants (2d American ed.). D. Appleton, New York. https://doi.org/10.5962/bhl.title.55127
  • Dhankar, S.K., & Singh, S. (2013). Thermal requirement for flowering and fruit yield attainment in advance lines of okra. Journal of Agrometeorol, 15(1), 39-42.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302. https://doi.org/10.2307/1932409
  • Doyle, J.J., & Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
  • Duzyaman, E., & Vural, H. (2000). Different approaches of the improvement process in some local okra varieties. In II Balkan Symposium on Vegetables and Potatoes, 579, 139-144.
  • https://doi.org/10.17660/ActaHortic.2002.579.20. Duzyaman, E., & Vural, H. (2002). Farklı ekocoğrafik kökenli bamya genotiplerinin morfolojik varyabilitesi üzerinde bir araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 39(2), 17-24.
  • Duzyaman, E., & Vural, H. (2003a). Evaluation of pod characteristics and nutritive value of okra genetic resources. Acta Horticulturae, 598, 103–110. https://doi.org/10.17660/ActaHortic.2003.598.15
  • Duzyaman, E., & Vural, H. (2003b). Managing the variability in okra breeding pro-grams by considering the preferences of the domestic market. Acta Horticulturae, 598, 129– 135. https://doi.org/ 10.17660/ActaHortic.2003.598.18
  • Duzyaman, E. (2005). Phenotypic diversity within a collection of distinct okra (Abelmoschus esculentus) cultivars derived from Turkish land races. Genetic Resources and Crop Evolution, 52, 1019-1030. https://doi.org/10.1007/s10722-004-6118-9
  • Duzyaman, E. (2009). Okra in Turkey domestic landraces. In: Okra Handbook Global Production, Processing, and Crop Improvement (Dhankhar B.S. & Singh R., eds.). HNB Publishing, New York, 475, 323-346.
  • FAO, (2018). FAOSTAT. Retrieved October 11, 2020, from http://www.fao.org/faostat/en/ - data/QC/. Finnegan, D.J. (1989). Eukaryotic transposable elements and genome evolution. Trends in Genetics, 5, 103-107. https://doi.org/10.1016/0168-9525(89)90039-5
  • Gulsen, O., Karagul, S., & Abak K. (2007). Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia, 62(1), 41-45. https://doi.org/10.2478/s11756-007-0010-y
  • IBM, (2015). IBM SPSS Statistics for Windows, Version 23.0. Armonk, New York.
  • Joshi, A. B., & Hardas, M. W. (1956). Alloploid Nature of Okra, Abelmoschus esculentus (L.) Monech. Nature, 178(4543), 1190-1190. https://doi.org/10.1038/1781190a0
  • Kalendar, R., Antonius, K., Smýkal, P., & Schulman, A.H. (2010). İPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, 121(8), 1419-1430. https://doi.org/10.1007/s00122-010-1398-2
  • Kalloo, G., & Bergh, B.O. (1993) Genetic improvement of vegetable plants (1st ed.). Pergamon Press, Oxford.
  • Karakoltsidis, P.A., & Constantinides, S.M. (1975). Okra seeds. New protein source. Journal of Agricultural and Food Chemistry, 23(6), 1204-1207. https://doi.org/10.1021/jf60202a041
  • Kumar, S., Parekh, M.J., Fougat, R.S., Patel, S.K., Patel, C.B., Kumar, M., & Patel, B.R. (2017). Assessment of genetic diversity among okra genotypes using SSR markers. Journal of Plant Biochemistry and Biotechnology, 26(2), 172-178. https://doi.org/10.1007/s13562-016-0378-2
  • Kyriakopoulou, O.G., Arens, P., Pelgrom, K.T.B., Bebeli, P., & Passam, H.C. (2014) Genetic and morphological diversity of okra (Abelmoschus esculentus [L.] Moench.) genotypes and their possible relationships, with particular reference to Greek landraces. Scientia Horticulturae, 171, 58–70. https://doi.org/10.1016/j.scienta.2014.03.029
  • Lamont, W.J. (1999). Okra-A versatile vegetable crop. HortTechnology, 9, 179-184.
  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research. 27(2), 209–220.
  • Martin, F.W., Rhodes, A.M., Ortiz, M., & Díaz, F. (1981). Variation in okra. Euphytica, 30(3), 697-705. https://doi.org/10.1007/BF00038798
  • Michener, C.D., & Sokal, R.R. (1957). A quantitative approach to a problem of classification. Evolution, 11, 490–499. https://doi.org/10.1111/j.1558-5646.1957.tb02884.x
  • Nwangburuka, C. C., Kehinde, O. B., Adegbite, O. A., & Denton, O. A. (2011). Mitotic chromosomes in Abelmoschus esculentus (L.) Moench esculentus (L.) Moench. Annals of Biological Research, 2(4), 85-90.
  • Prakash, K., Pitchaimuthu, M., & Ravishankar, K.V. (2011). Assessment of genetic relatedness among okra genotypes (Abelmoschus esculentus (L.) Moench) using RAPD markers. Electronic Journal of Plant Breeding, 2(1), 80-86.
  • Ravishankar, K.V., Muthaiah, G., Mottaiyan, P., & Gundale, S.K. (2018). Identification of novel microsatellite markers in okra (Abelmoschus esculentus (L.) Moench) through next-generation sequencing and their utilization in analysis of genetic relatedness studies and cross-species transferability. Journal of Genetics, 97(1), 39-47. https://doi.org/10.1007/s12041-018-0893-0
  • Reddy, M. T. (2015). Crossability Behaviour and Fertility Restoration Through Colchiploidy in Interspecific Hybrids of Abelmoschus esculentus × Abelmoschus manihot subsp. tetraphyllus. International Journal of Plant Science and Ecology, 1(4), 172-181.
  • Rohlf, J.F. (1992). NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System, version 2.1, Exeter Publishing, LTD, New York.
  • Savello, P.A., Martin, F.W., & Hill, J.M. (1980). Nutritional composition of okra seed meal. Journal of Agricultural and Food Chemistry, 28(6), 1163-1166. https://doi.org/10.1021/jf60232a021
  • Tindall, H.D. (1983). Vegetables in the Tropics (1st ed.). Macmillan Press Ltd., London. https://doi.org/10.1007/978-1-349-17223-8
  • TTSM, (2020). Republic of Turkey Ministry of Agriculture and Forestry Variety Registration and Seed Certification Center (TTSM) Ankara, Turkey. Retrieved November 10, 2020, from https://www.tarimorman.gov.tr/BUGEM/TTSM/.
  • UPOV, (1999). Guidelines for the conduct of test for distinctness, uniformity and stability, of okra (Abelmoschus esculentus (L.) Moench). International Union for the Protection of New Varieties of Plants, TG/167/3, Geneva.
  • Yaldiz, G., Camlica, M., Nadeem, M. A., Nawaz, M. A., & Baloch, F. S. (2018). Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry, 42(3), 154-164. http://doi.org/ 10.3906/tar-1708-32
  • Yildiz, M., Kocak, M., & Baloch, F.S. (2015a). Genetic bottlenecks in Turkish okra germplasm and utility of iPBS retrotransposon markers for genetic diversity assessment. Genetics and Molecular Research, 14(3), 10588-10602. http://dx.doi.org/10.4238/2015
  • Yildiz, M., Ekbic, E., Duzyaman, E., Serce, S., & Abak, K. (2015b). Genetic and phenotypic variation of Turkish Okra (Abelmoschus esculentus L. Moench) accessions and their possible relationship with American, Indian and African germplasms. Journal of Plant Biochemistry and Biotechnology, 25(3), 234-244. http://dx.doi.org /10.1007/s13562-015-0330-x
  • Yuan, C.Y., Zhang, C., Wang, P., Hu, S., Chang, H.P., Xiao, W.J., Lu, X.T., Jiang, S.B., Ye, J.Z., & Guo, X.H. (2014). Genetic diversity analysis of okra (Abelmoschus esculentus L.) by inter-simple sequence repeat (ISSR) markers. Genetics and Molecular Research, 13(2), 3165-3175. http://dx.doi.org/10.4238/2014
APA KANTAR F, YEMŞEN S, SIMSEK C, YILMAZ N, MUTLU N (2021). Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. , 7 - 15.
Chicago KANTAR Faik,YEMŞEN Sevde Nur,SIMSEK CANSU,YILMAZ Neslihan,MUTLU Nedim Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. (2021): 7 - 15.
MLA KANTAR Faik,YEMŞEN Sevde Nur,SIMSEK CANSU,YILMAZ Neslihan,MUTLU Nedim Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. , 2021, ss.7 - 15.
AMA KANTAR F,YEMŞEN S,SIMSEK C,YILMAZ N,MUTLU N Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. . 2021; 7 - 15.
Vancouver KANTAR F,YEMŞEN S,SIMSEK C,YILMAZ N,MUTLU N Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. . 2021; 7 - 15.
IEEE KANTAR F,YEMŞEN S,SIMSEK C,YILMAZ N,MUTLU N "Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm." , ss.7 - 15, 2021.
ISNAD KANTAR, Faik vd. "Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm". (2021), 7-15.
APA KANTAR F, YEMŞEN S, SIMSEK C, YILMAZ N, MUTLU N (2021). Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. Biotech Studies, 30(1), 7 - 15.
Chicago KANTAR Faik,YEMŞEN Sevde Nur,SIMSEK CANSU,YILMAZ Neslihan,MUTLU Nedim Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. Biotech Studies 30, no.1 (2021): 7 - 15.
MLA KANTAR Faik,YEMŞEN Sevde Nur,SIMSEK CANSU,YILMAZ Neslihan,MUTLU Nedim Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. Biotech Studies, vol.30, no.1, 2021, ss.7 - 15.
AMA KANTAR F,YEMŞEN S,SIMSEK C,YILMAZ N,MUTLU N Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. Biotech Studies. 2021; 30(1): 7 - 15.
Vancouver KANTAR F,YEMŞEN S,SIMSEK C,YILMAZ N,MUTLU N Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm. Biotech Studies. 2021; 30(1): 7 - 15.
IEEE KANTAR F,YEMŞEN S,SIMSEK C,YILMAZ N,MUTLU N "Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm." Biotech Studies, 30, ss.7 - 15, 2021.
ISNAD KANTAR, Faik vd. "Phenotypic and iPBS-retrotransposon marker diversity in okra (Abelmoschus esculentus (L.) Moench) germplasm". Biotech Studies 30/1 (2021), 7-15.