Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities

Yıl: 2020 Cilt: 14 Sayı: 2 Sayfa Aralığı: 129 - 138 Metin Dili: İngilizce DOI: 10.25135/rnp.155.19.06.1326 İndeks Tarihi: 12-11-2021

Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities

Öz:
Scots pine (Pinus sylvestris) is the most widely distributed tree species among pine species. Antiradical, antioxidant properties and inhibition properties on butyrylcholinesterase (BChE), acetylcholinesterase (AChE) and α-glycosidase activities of ethanol extracts of P. sylvestris were reported from Sarikamis (Kars), Gumushane and Erzurum provinces of Turkey. The cones of P. Sylvestris from Gumushane showed the highest IC50 values in both DPPH.(14.75 µg/mL) and ABTS.+ (12.56 µg/mL) radical scavenging activities. An LC-HRMS method developed and the secondary metabolite composition of extracts were identified. The major compounds are determined as (+)-trans taxifolin, quercitrin, fumaric acid, (-) epicatechin, and nepetin-7-O-glucoside, apigenin-7-O-glucoside in P. sylvestris cones.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Erişime Açık
  • [1] I. Gulcin (2012). Antioxidant activity of food constituents-an overview, Arch. Toxicol. 86, 345-391.
  • [2] M.H. Sehitoglu, H. Han, P. Kalin, I. Gulcin, A. Ozkan and H.Y. Aboul-Enein (2015). Pistachio (Pistacia vera L.) Gum: a potent inhibitor of reactive oxygen species, J. Enzyme Inhib. Med. Chem. 30, 264-269.
  • [3] B. Halfon, O. Cetin, G. Kokdil and G. Topcu (2019). Chemical investigation and bioactivity screening of Salvia cassia Extracts, Rec. Nat. Prod. 13(2), 156-166.
  • [4] H. Han, H. Yılmaz and I. Gulcin (2018). Antioxidant activity of flaxseed (Linum usitatissimum L.) and analysis of its polyphenol contents by LC-MS/MS, Rec. Nat. Prod. 12(4), 397-402.
  • [5] K. Aksu, F. Topal, I. Gulcin, F. Tumer and S. Goksu (2015). Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines, Arch. Pharm. 348(6), 446-455.
  • [6] E. Bursal, A. Aras, O. Kilic, P. Taslimi, A.C. Goren and I. Gulcin (2019). Phytochemical content, antioxidant activity and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase and α-glycosidase enzymes, J. Food Biochem. 43(3), e12776.
  • [7] H. Tohma, A. Altay, E. Koksal, A.C. Gören and I. Gulcin (2019). Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria)-Analysis of its phenolic compounds by LCMS/MS, J. Food Measure. 13(2), 1607-1619.
  • [8] G. Maharramova, P. Taslimi, A. Sujayev, F. Farzaliyev, L. Durmaz and I. Gulcin (2018). Synthesis, characterization, antioxidant, antidiabetic, anticholinergic, and antiepileptic properties of novel Nsubstituted tetrahydropyrimidines based on phenylthiourea, J. Biochem. Mol. Toxicol. 32(12), e22221.
  • [9] H. Tohma, I. Gulcin, E. Bursal, A.C. Goren, S.H. Alwasel and E. Koksal (2017). Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS, J. Food Measure. 11(2), 556-566.
  • [10] C.I. Wright, C. Geula and M.M. Mesulam (1993). Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability, Ann Neurol. 34(3), 373-384.
  • [11] C. Bayrak, P. Taslimi, I. Gulcin and A. Menzek (2017). The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes, Bioorg. Chem. 72, 359-366.
  • [12] I. Turna (2003). Variation of some morphological and electrophoretic characters of 11 populations of scots pine in Turkey, Isr. J. Plant Sci. 51(3), 223-230.
  • [13] W.T. Sinclair, J.D. Morman and R.A. Ennos (1999). The postglacial history of Scots pine (P. sylvestris L.) in western Europe: evidence from mitochondrial DNA variation, Mol. Ecol. 8(1), 83-88.
  • [14] H. Ucuna, Y.K. Bayhan, Y. Kaya, A. Cakici and O.F. Algur (2002). Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris, Bioresour. Technol. 85(2), 155-158.
  • [15] I.C. Anderson, C.D. Campbell and J.I. Prosser (2003). Diversity of fungi in organic soils under a moorland - Scots pine (P. sylvestris L.) gradient, Environ. Microbiol. 5(11), 1121-32.
  • [16] J.H. Bae, Y.J. Park, J. Namiesnik, I. Gulcin, T.C. Kim, H.C. Kim, B.G. Heo, S. Gorinstein and Y.G. Ku (2016). Effects of artificial lighting on bioactivity of sweet red pepper (Capsicum annuum L.), Int. J. Food Sci. Technol. 51(6), 1378-1385.
  • [17] https://www.yesilaski.com/cam-agaclarinin-tedavide-kullanilisi.html.24.10.2019.
  • [18] O. Ustun, F.S. Senol, M. Kurkcuoglu, I.E. Orhan, M. Kartal and K.H.C. Baser, (2012). Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol, Ind. Crops Prod. 38, 115-123.
  • [19] P. Taslimi, C. Caglayan, F. Farzaliyev, O. Nabiyev, A. Sujayev, F. Turkan, R. Kaya and I. Gulcin (2018). Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase enzymes inhibitors: the novel N,N’-bis-cyanomethylamine and alkoxymethylamine derivatives, J. Biochem. Mol. Toxicol. 32(4), e22042.
  • [20] M. Karonen, M. Hamalainen, R. Nieminen, K.D. Klika, J. Loponen, V.V. Ovcharenko, E. Moilanen and K. Pihlaja (2004). Phenolic extractives from the Bark of P. sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E2, J. Agric. Food Chem. 52(25), 7532-7540.
  • [21] M. Oyaizu (1986). Studies on products of browning reaction prepared from glucoseamine, Jpn. J. Nutr. Diet. 44, 307-314.
  • [22] R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir and E. Ercal (2006). The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, Int. J. Food Sci. Nutr. 57, 292-304.
  • [23] M.S. Blois (1958). Antioxidant deteminations by the use of a stable free radical, Nature 26, 1199-1200.
  • [24] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Rad. Biol. Med. 26, 1231-1237.
  • [25] G.L. Ellman, K.D. Courtney, V. Andres and R.M. Featherston (1961). A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7, 88-90.
  • [26] I. Gulcin, E. Bursal, M. H. Şehitoğlu, M. Bilsel and A.C. Gören (2010). Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey, Food Chem. Toxicol. 48(8-9), 2227-2238.
  • [27] K.S. Kang and D. Lindgren (1998). Fertility variation and its effect on the relatedness of seeds in Pinus densiflora, Pinus thunbergii and Pinus koraiensis clonal seed orchards, Silvae Genet. 47, 196-201.
  • [28] F. Prescher (2007). Seed orchards-genetic considerations on function, management and seed procurement. Acta Universitatis Agriculturae, Doctoral Thesis, XI Chapters and p 49. Umea.
  • [29] N. Bilir, F. Prescher, D. Lindgren and J. Kron (2008). Variation in seed related characters in clonal seed orchards of Pinus sylvestris, New Forest. 36, 187-199.
  • [30] V.C. Taty-Costodes, H. Fauduet, C. Porte and A. Delacroix (2003). Scavenging of Cd[II] and Pb[II] ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater. 105, 121-142.
  • [31] N. Eruygur, M. Atas, M. Tekin, P. Taslimi, U.M. Kocyigit and I. Gulcin (2019). In vitro antioxidant, antimicrobial, anticholinesterase and antidiabetic activities of Turkish endemic Achillea cucullata (Asteraceae) from ethanol extract, S. Afr. J. Bot. 120, 141-145.
  • [32] H. Teng, L. Chen, T. Fang, B. Yuan and Q. Lin (2017). Rb2 Inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells, J. Funct. Foods. 28, 306-313.
  • [33] L. Skrypnik, N. Grigorev, D. Michailov, M. Antipina, M. Danilova and A. Pungin (2019). Comparative study on radical scavenging activity and phenolic compounds content in water bark extracts of alder (Alnus glutinosa (L.) Gaertn.), oak (Quercus robur L.) and pine (Pinus sylvestris L.), Eur. J Wood Wood Prod, 77(5), 879-890.
APA Topal M (2020). Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. , 129 - 138. 10.25135/rnp.155.19.06.1326
Chicago Topal Meryem Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. (2020): 129 - 138. 10.25135/rnp.155.19.06.1326
MLA Topal Meryem Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. , 2020, ss.129 - 138. 10.25135/rnp.155.19.06.1326
AMA Topal M Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. . 2020; 129 - 138. 10.25135/rnp.155.19.06.1326
Vancouver Topal M Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. . 2020; 129 - 138. 10.25135/rnp.155.19.06.1326
IEEE Topal M "Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities." , ss.129 - 138, 2020. 10.25135/rnp.155.19.06.1326
ISNAD Topal, Meryem. "Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities". (2020), 129-138. https://doi.org/10.25135/rnp.155.19.06.1326
APA Topal M (2020). Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. Records of Natural Products, 14(2), 129 - 138. 10.25135/rnp.155.19.06.1326
Chicago Topal Meryem Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. Records of Natural Products 14, no.2 (2020): 129 - 138. 10.25135/rnp.155.19.06.1326
MLA Topal Meryem Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. Records of Natural Products, vol.14, no.2, 2020, ss.129 - 138. 10.25135/rnp.155.19.06.1326
AMA Topal M Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. Records of Natural Products. 2020; 14(2): 129 - 138. 10.25135/rnp.155.19.06.1326
Vancouver Topal M Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities. Records of Natural Products. 2020; 14(2): 129 - 138. 10.25135/rnp.155.19.06.1326
IEEE Topal M "Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities." Records of Natural Products, 14, ss.129 - 138, 2020. 10.25135/rnp.155.19.06.1326
ISNAD Topal, Meryem. "Secondary Metabolites of Ethanol Extracts of Pinus sylvestris Cones from Eastern Anatolia and Their Antioxidant, Cholinesteraseand α-Glucosidase Activities". Records of Natural Products 14/2 (2020), 129-138. https://doi.org/10.25135/rnp.155.19.06.1326