Yıl: 2021 Cilt: 27 Sayı: 4 Sayfa Aralığı: 426 - 435 Metin Dili: İngilizce DOI: 10.15832/ankutbd.623876 İndeks Tarihi: 29-07-2022

Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes

Öz:
The use of biochar (BC) has an environmental importance in terms ofclimate change, soil fertility, waste management and energy generation.The purpose of this study was to reveal some of the structuralcharacteristics of BC produced from agricultural wastes by employingspectroscopic techniques within a short time frame. The BCs wereproduced via slow pyrolysis at 300 °C from four feedstocks: tea waste(TW), hazelnut husk (HH), rice husk (RH) and poultry litter (PL). The pHof plant-derived BC was alkaline (pH: 7-9), and the pH of manure-derivedBC was strongly alkaline (pH: 10.1). PLBC has the highest (4.67 dS m-1)electrical conductivity (EC) when compared to other BC materials.According to the X-ray fluorescence (XRF) analysis method, organiccompound contents of TWBC and HSBC were found to be higher thanthe other two BCs, while the other two BCs (RHBC and PLBC) werericher in mineral content. TWBC and HHBC were composed of moremineral elements when compared to RHBC and PLBC, but the latter twowere still rich in minerals. The surface area of RHBC was found higher(12.9 m2 g-1) than other BC materials. According to the X-rayfluorescence (XRF) analysis method, the total element content of PLBCwas found higher than the other BCs. In addition, the silicon (Si) contentof RHBC was considerably higher (16.4%). In PLBC’s XRD diagram:quartz (SiO2) at 3.41 (Å); calcite (CaCO3) at 3.96, 2.94 and 1.91 (Å);sylvine (KCl) at 3.06 and 1.85 (Å); and whitlockite ([Ca, Mg]3 [PO4]2) at2.78 and 2.17 (Å) were found. In HHBC and RHBC diagrams, partiallycrystallized carbon (CryC) peaks were mainly observed between 1.20 and2.34 (Å), and cristobalite peaks (i.e., amorphous SiO2) were observed at3.91 and 3.40 (Å).
Anahtar Kelime: XRD and XRF Spectroscopy Biochar Plant nutrients Spectroscopic characterisation

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad F, Khan A U & Yasar A (2013). Transesterification of oil extracted from different species of algae for biodisel production. Afr. J Environ Sci Technol 7(6):358-64 https://doi.org/10.5897/AJEST12.167
  • Al-Wabel M I, Al-Omran A, El-Naggar A H, Nadeem M & Usman A R A (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol 131: 374-379 https://doi.org/10.1016/j.biortech.2012.12.165
  • Apaydın-Varol E & Pütün A E (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis 98: 29-36 https://doi.org/10.1016/j.jaap.2012.07.001
  • Armynah B, Djafar Z, Piarah W H & Tahir D (2018). Analysis of chemical and physical properties of biochar from rice husk biomass. In Journal of Physics: Conference Series (Vol. 979, No. 1, p. 012038). IOP Publishing
  • ASTM D1762-84 (2007). Standard test method for chemical analysis of wood charcoal. Conshohocken, PA: American Society for Testing and Materials
  • Beesley L, Moreno-Jimenez E, Gomez-Eyles J L, Harris E, Robinson B & Sizmur T (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159: 474-480 https://doi.org/10.1016/j.envpol.2011.07.023
  • Bellon-Maurel V & McBratney A (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–Critical review and research perspectives. Soil Biology and Biochemistry 43(7): 1398-1410 https://doi.org/10.1016/j.soilbio.2011.02.019
  • Bintaş E, Bozkurt M, Küçükyılmaz K, Konak R, Çınar M, Akşit H, Seyrek S & Çatlı A U (2014). Efficacy of Supplemental Natural Zeolite in
  • Broiler Chickens Subjected to Dietary Calcium Deficiency. Italian Journal of Animal Science 13: 3141 275-283 https://doi.org/10.4081/ijas.2014.3141
  • Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T & Antal M J (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Industrial & Engineering Chemistry Research 46(18): 5954-5967 https://doi.org/10.1021/ie070415u
  • Bremner J M (1965). Total nitrogen. Agronomy 9: 1149-78 https://doi.org/10.2134/agronmonogr9.2.c32
  • Brunauer S, Emmett P H & Teller E (1938). Adsorption of Gases in Multimolecular Layers. J Am Chem Soc. 60(2): 309-319 https://doi.org/10.1021/ja01269a023
  • Cabrera A, Cox L, Spokas K A, Celis R, Hermosín M C, Cornejo J & Koskinen W C (2011). Comparative sorption and leaching study of the herbicides fluometuron and 4- chloro-2 methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. J. Agri. Food Chem 14: 12550-12560 https://doi.org/10.1021/jf202713q
  • Chan K Y & Xu Z (2009). Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S, editors. Biochar for Environmental Management Science and Technology. Earthscan, London pp. 67-8. https://doi.org/10.4324/9781849770552
  • Chan K Y, Van Zwieten L, Meszaros I, Downie A & Joseph S (2007). Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res 45: 629-634 https://doi.org/10.1071/SR07109
  • Clemente J S, Beauchemin S, Thibault Y, MacKinnon T & Smith D (2018). Differentiating Inorganics in Biochars Produced at Commercial Scale Using Principal Component Analysis. ACS Omega 3: 6931-6944 https://doi.org/10.1021/acsomega.8b00523
  • DeLuca T H (2009). Nutrient imbalances: follow the waste. Science 326(5953): 665-665 https://doi.org/10.1126/science.326_665a
  • Downie A, Crosky A & Munroe P (2009). Physical properties of biochar. In ‘Biochar for Environmental Management: Science and Technology’. (Eds J Lehmann, S Joseph) pp. 13-32 (Earthscan, London, UK)
  • El-Naggar A, El-Naggar A H, Shaheen S M, Sarkar B, Chang S X, Tsang D C & Ok Y S (2019). Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review. Journal of environmental management 241: 458- 467 https://doi.org/10.1016/j.jenvman.2019.02.044
  • Enders A, Hanley K, Whitman T, Joseph S & Lehmann J (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 1: 114: 644 https://doi.org/10.1016/j.biortech.2012.03.022
  • European Biochar Certificate [EBC] (2015). Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland
  • Evans M R, Jackson B R, Popp M & Sadaka S (2017). Chemical Properties of Biochar Materials Manufactured from Agricultural Products Common to the Southeast United States. HortTecnology 27(1) https://doi.org/10.21273/HORTTECH03481-16
  • Fang Z & Xu C B (2014). Near-critical and supercritical water and their applications for biorefineries. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-8923-3
  • Field J L, Keske C M, Birch G L, DeFoort M W & Cotrufo M F (2013). Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. Gcb Bioenergy 5(2): 177-191 https://doi.org/10.1111/gcbb.12032
  • Glaser B, Parr M, Braun C & Kopolo G (2009). Biochar is carbon negative. Nat. Geosci 2(1): 2. https://doi.org/10.1038/ngeo395
  • Gunarathne V, Mayakaduwa S & Vithanage M (2017). Biochar’s Influence as a Soil Amendment for Essential Plant Nutrient Uptake. In: Naeem M, Ansari, Gill S. (eds) Eseential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_3
  • Güllü B & Kadıoğlu Y K (2017). Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 183: 68-74. https://doi.org/10.1016/j.saa.2017.04.032
  • Hammes K, Schmidt M W, Smernik R J, Currie L A, Ball W P, Nguyen T H & Cornelissen G (2007). Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles 21(3) https://doi.org/10.1029/2006GB002914
  • Igalavithana A D, Lee S E, Lee Y H, Tsang D C, Rinklebe J, Kwon E E & Ok Y S (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174: 593-603 https://doi.org/10.1016/j.chemosphere.2017.01.148
  • Jassal R S, Johnson M S, Molodovskaya M, Black T A, Jollymore A & Sveinson K (2015). Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. J Environ Manage 1(152): 140-4 https://doi.org/10.1016/j.jenvman.2015.01.021
  • Kadıoğlu Y K, Üstündağ Z, Deniz K, Yenikaya C & Erdoğan Y (2009). XRF and Raman Characterization of Antimonite. Instrumentation Science and Technology 37: 683-696 https://doi.org/10.1080/10739140903252956
  • Keiluweit M, Nico P S, Johnson M G & Kleber M (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology 44: 1247-1253 https://doi.org/10.1021/es9031419
  • Kim W K, Shim T, Kim Y S, Hyun S, Ryu, C, Park Y K & Jung J (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource technology 138: 266-270 https://doi.org/10.1016/j.biortech.2013.03.186
  • Koralay T (2010). Petrographic and geochemical characteristics of upper Miocene Tekkedag volcanics (CentralAnatolia-Turkey). Chemie der Erde 70: 335-351 https://doi.org/10.1016/j.chemer.2010.03.002
  • Kuo S (1996) Phosphorus. In: Sparks, D.L., Ed., Methods of Soil Analysis: Part 3, SSSA Book Series No. 5, SSSA and ASA, Madison, 869- 919 https://doi.org/10.2136/sssabookser5.3.c32
  • Lehman J, Gaunt J & Rondon M (2006). Biochar sequestration in terrestial ecosystems. A review. Mitig. Adapt. Strateg. Glob. Change 11(2): 403-427 https://doi.org/10.1007/s11027-005-9006-5
  • Lehmann J & Joseph S (2015). Biochar for environmental management: an introduction. In: Biochar for environmental management: science, technology and implementation. Taylor and Francis, London pp. 1-13 https://doi.org/10.4324/9780203762264
  • Li X, Shen Q, Zhang D, Mei X, Ran W, Xu Y & Yu G (2013). Functional groups determine biochar properties (pH and EC) as studied by twodimensional 13C NMR correlation spectroscopy. PLoS One 8(6). https://doi.org/10.1371/journal.pone.0065949.g001
  • Nakka S B R (2015). Biocharculture: Biochar for environment and development. ASIN: B01FJUPYCO
  • Ogawa M, Okimori Y & Takahashi F (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitig. Adapt. Strateg. Glob. Change 11: 429-444 https://doi.org/10.1007/s11027-005-9007-4
  • Prakongkep N, Gilkes R J & Wanpen W (2015). Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science 178(5) https://doi.org/10.1002/jpln.201500001
  • Qadeer R, Hanif J, Saleem M & Afzal M (1994). Characterization of activated-charcoal. J. Chem. Soc. Pak 16(4): 229-235
  • Qambrani N A, Rahman M M, Won S, Shim S, & Ra C (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews 79: 255-273 https://doi.org/10.1016/j.rser.2017.05.057
  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A R & Lehmann J (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48(3): 271-284 https://doi.org/10.1007/s00374-011- 0624-7
  • Rayment G E & Higginson F R (1992). Australian Laboratory Handbook of Soil and Water Chemical Method. Reed International Books Australia P/L, Trading as Inkata Press, Port Melbourne 330 p
  • Scott H, Ponsonby D J & Atkinson C J (2014). Biochar: An improver of nutrient and soil water availability-what is the evidence? CAB Reviews 9, No. 01. CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources 9 https://doi.org/10.1079/PAVSNNR20149019
  • Sikder S & Joardar J C (2019). Biochar production from poultry litter as management approach and effects on plant growth. Int J Recycl Org Waste Agricult 8: 47 https://doi.org/10.1007/s40093-018-0227-5
  • Singh B, Singh B P & Cowie A L (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48(7): 516-525 https://doi.org/10.1071/SR10058
  • Suliman W, Harsh J B, Abu-Lail N I, Fortuna A M, Dallmeyer I & Garcia-Perez M (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy 84: 37-48 https://doi.org/10.1016/j.biombioe.2015.11.010
  • Tamai K & Feng Ma J (2003). Characterization of silicon uptake by rice roots. New Phytologist 158(3): 431-436 https://www.jstor.org/stable/1514103
  • Tang J, Zhu W, Kookana R & Katayama A (2013). Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6): 653-9. https://doi.org/10.1016/j.jbiosc.2013.05.035
  • Verheijen F, Jeffery S, Bastos A C, van der Velde M & Diafas F (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR 24099 EN Office for the Official Publications of the European Communities, Luxembourg, 149 p https://doi.org/10.2788/472
  • Wang M, Wang J J & Wang X (2018). Effect of KOH-enhanced biochar on increasing soil plant-available silicon. Geoderma, 321: 22-31 https://doi.org/10.1016/j.geoderma.2018.02.001
  • Wilding L P, Brown R E & Holowaychuk N (1967). Accessibility and Properties of Occluded Carbon in Biogenic Opal. Soil Science 103: 56‐ 61
  • Xu Y & Chen B (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource technology, 146: 485-493 https://doi.org/10.1016/j.biortech.2013.07.086
  • Zhao B & Nartey O D (2014). Characterization and evaluation of biochars derived from agricultural waste biomass from Gansu, China *, the 2014 world congress on Advances on civil, environmental, and materials research (ACEM 14), Busan, Korea, August, 24-28, 2014 https://doi.org/10.1155/2014/715398
  • Zhao L, Cao X, Mašek O & Zimmerman A (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of hazardous materials 256:1-9 https://doi.org/10.1016/j.jhazmat.2013.04.015
APA AKÇA M, SOZÜDOGRU OK S, Deniz K, MOHAMEDELNOUR A, Kibar M (2021). Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. , 426 - 435. 10.15832/ankutbd.623876
Chicago AKÇA Muhittin Onur,SOZÜDOGRU OK SONAY,Deniz Kıymet,MOHAMEDELNOUR Abdelbagi,Kibar Mümtaz Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. (2021): 426 - 435. 10.15832/ankutbd.623876
MLA AKÇA Muhittin Onur,SOZÜDOGRU OK SONAY,Deniz Kıymet,MOHAMEDELNOUR Abdelbagi,Kibar Mümtaz Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. , 2021, ss.426 - 435. 10.15832/ankutbd.623876
AMA AKÇA M,SOZÜDOGRU OK S,Deniz K,MOHAMEDELNOUR A,Kibar M Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. . 2021; 426 - 435. 10.15832/ankutbd.623876
Vancouver AKÇA M,SOZÜDOGRU OK S,Deniz K,MOHAMEDELNOUR A,Kibar M Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. . 2021; 426 - 435. 10.15832/ankutbd.623876
IEEE AKÇA M,SOZÜDOGRU OK S,Deniz K,MOHAMEDELNOUR A,Kibar M "Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes." , ss.426 - 435, 2021. 10.15832/ankutbd.623876
ISNAD AKÇA, Muhittin Onur vd. "Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes". (2021), 426-435. https://doi.org/10.15832/ankutbd.623876
APA AKÇA M, SOZÜDOGRU OK S, Deniz K, MOHAMEDELNOUR A, Kibar M (2021). Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. Tarım Bilimleri Dergisi, 27(4), 426 - 435. 10.15832/ankutbd.623876
Chicago AKÇA Muhittin Onur,SOZÜDOGRU OK SONAY,Deniz Kıymet,MOHAMEDELNOUR Abdelbagi,Kibar Mümtaz Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. Tarım Bilimleri Dergisi 27, no.4 (2021): 426 - 435. 10.15832/ankutbd.623876
MLA AKÇA Muhittin Onur,SOZÜDOGRU OK SONAY,Deniz Kıymet,MOHAMEDELNOUR Abdelbagi,Kibar Mümtaz Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. Tarım Bilimleri Dergisi, vol.27, no.4, 2021, ss.426 - 435. 10.15832/ankutbd.623876
AMA AKÇA M,SOZÜDOGRU OK S,Deniz K,MOHAMEDELNOUR A,Kibar M Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. Tarım Bilimleri Dergisi. 2021; 27(4): 426 - 435. 10.15832/ankutbd.623876
Vancouver AKÇA M,SOZÜDOGRU OK S,Deniz K,MOHAMEDELNOUR A,Kibar M Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. Tarım Bilimleri Dergisi. 2021; 27(4): 426 - 435. 10.15832/ankutbd.623876
IEEE AKÇA M,SOZÜDOGRU OK S,Deniz K,MOHAMEDELNOUR A,Kibar M "Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes." Tarım Bilimleri Dergisi, 27, ss.426 - 435, 2021. 10.15832/ankutbd.623876
ISNAD AKÇA, Muhittin Onur vd. "Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes". Tarım Bilimleri Dergisi 27/4 (2021), 426-435. https://doi.org/10.15832/ankutbd.623876