Yıl: 2020 Cilt: 7 Sayı: 2 Sayfa Aralığı: 487 - 502 Metin Dili: İngilizce DOI: 10.31202/ecjse.660136 İndeks Tarihi: 02-12-2021

Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor

Öz:
In this study, rotors space and number of the blade are examined in terms of the torque, power and thrust concept. Three-dimensional flow analysis was performed by using SolidWorks flow simulation. In aircraft propeller design, thrust, torque and power concept has a great deal of importance. The rotor can be defined as a propulsion system, which provides the thrust with a propeller. The pressure difference produces due to the velocity difference between the lower and upper surfaces of the airfoil. The thrust is obtained with this pressure difference. The rotor blades produce drag and thrust thanks to rotating airfoils. The number of the blade affects the amount of thrust directly. If the blade number of rotor increases, the produced thrust, torque by the rotor and the needed power to drive rotor will also increase. In this study, the effect of blade number (2, 3 and 4 blades) and distance between rotors (0.05*D, 0.1*D, 0.25*D, 0.5*D, 0.75*D, 1*D) on the thrust, torque and power are investigated.
Anahtar Kelime:

Rotor Mesafesinin ve Kanat Sayısının bir Koaksiyel Rotorun İtkisine, Torkuna ve Gücüne Etkisi

Öz:
Bu çalışmada rotor boşluğu ve kanat sayısı tork, güç ve itki kavramı açısından incelenmiştir. SolidWorks akış simülasyonu kullanılarak üç boyutlu akış analizi yapıldı. Uçak pervanesi tasarımında, itme, tork ve güç konseptinin önemi büyüktür. Rotor, pervane ile itki sağlayan tahrik sistemi olarak tanımlanabilir. Basınç farkı, kanat profilinin alt ve üst yüzeyleri arasındaki hız farkı nedeniyle oluşur. İtme kuvveti bu basınç farkı ile elde edilir. Dönen kanat profilleri sayesinde rotor kanatları sürükleme ve itme kuvveti üretir. Kanat sayısı doğrudan itme miktarını etkiler. Rotorun kanat sayısı arttıkça, rotor tarafından üretilen itki, tork ve rotoru çalıştırmak için gereken güç de artacaktır. Bu çalışmada kanat sayısının (2, 3 ve 4 kanat) ve rotorlar arasındaki mesafenin (0,05 * D, 0,1 * D, 0,25 * D, 0,5 * D, 0,75 * D, 1 * D) itkiye, torka ve güce etkisi incelenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. The Wikipedia website. [Online]. Available: https://en.wikipedia.org/wiki/Propeller, 2016.
  • [2]. Noh M. H. M.; Rashid H.; Hamid A. H. A.; Iskandar M. F, Comparison of Numerical Investigation on Airfoil and Flat Louvers on the Air Duct Intake, Procedia Engineering, 2012, 41, 1761 – 1768.
  • [3]. Fang-Wen H.; Shi-Tang D., Numerical Analysis for Circulation Distribution of Propeller Blade, Journal of hydrodynamics, 2010, 22(4): 488-493.
  • [4]. Ueno M.; Tsukada Y., Estimation of full-scale propeller torque and thrust using free-running model ship in waves, Ocean Engineering, 2016, 120, 30–39.
  • [5]. Driss Z.; Mlayeh O.; Driss D.; Maaloul M.; Abid M. S., Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor, Energy, 2014, 74, 506-517.
  • [6]. Doğru M. H.; Güzelbey İ. H.; Göv İ., Ducted Fan Effect on the Elevation of a Concept Helicopter When the Ducted Faintail is Located in a Ground Effect Region, Journal of Aerospace Engineering, 2016, 29(1), 04015030.
  • [7]. Lei Y.; Bai Y.; Xu Z.; Gao Q.; Zhao C., An experimental investigation on aerodynamic performance of a coaxial rotor system with different rotor spacing and wind speed, Experimental Thermal and Fluid Science, 2013, 44, 779–785.
  • [8]. Göv İ., Blade Number Effect on the Thrust, Torque and Power of Propeller, International Conference on Advanced Technology & Sciences, 2016, 1435-1438.
  • [9]. Yoon S., Chan W. M., and Pulliam T. H., Computations of Torque-Balanced Coaxial Rotor Flows, AIAA SciTech 2017,
  • [10]. Hana S., Songa W., Hana Z., Lib S., Lin Y., Hybrid inverse/optimization design method for rigid coaxial rotor airfoils considering reverse flow, Aerospace Science and Technology, 2019, 95, 105488.
  • [11]. Kavuran G., Alagoz B. B., Ates A., Yeroglu C., Implementation of Model Reference Adaptive Controller with Fractional Order Adjustment Rules for Coaxial Rotor Control Test System Balkan Journal Of Electrical & Computer Engineering, DOI: 10.17694/bajece.93236
  • [12]. Shukla D. and Komerath N., Multirotor Drone Aerodynamic Interaction Investigation, Drones 2018, 2, 43; doi:10.3390/drones2040043
  • [13]. Feil R., Hajek M., Rauleder J., Vibratory load predictions of a high-advance-ratio coaxial rotor system validated by wind tunnel tests, Journal of Fluids and Structures, 2020, 92, 102764
  • [14]. Gül İ. and Kolip A., Parça Kanatlı Savonius Rüzgâr Türbin Performansının İncelenmesi, ElCezerî Journal of Science and Engineering, 2018, 5, 3, 816-827.
  • [15]. Chen Y., Hu L., Liu S., Huang D., Forward/Reverse Attitude Solution and Specificity Analysis for Independent Pitch Control System of Coaxial Dual-Rotor Compound Helicopter, Arab J Sci Eng, 2018, 43, 1205–1224.
  • [16]. Jiang Y., Li H., Jia H., Aerodynamics Optimization of a Ducted Coaxial Rotor in Forward Flight Using Orthogonal Test Design, Shock and Vibration, 2018, doi: 10.1155/ 2018/ 2670439.
  • [17]. Yuan Y., Thomson D., Chen R., Propeller Control Strategy for Coaxial Compound Helicopters, Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2018, doi:10.1177/0954410018806796
  • [18]. Ferguson K., Thomson D., Performance comparison between a conventional helicopter and compound helicopter configurations, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015.
  • [19]. Santos-Medina G., Heras-Gaytan K.Y., Martinez-Garcia E.A., Torres-Cordoba R., CarrilloSaucedo V., Induced Force Hovering of Spherical Robot by Under-Actuated Control of Dual Rotor, book chapter 2, doi: 10.5772/63548.
  • [20]. Kim H.W., Kenyon A.R., Duraisamy K., Brown R.E., Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight, 9th International Powered Lift Conference, July 2008, London, England.
  • [21]. Enconniere J., Ortiz-Carretero J., Pachidis V., Mission optimisation for a conceptual coaxial rotorcraft for taxi applications, Aerospace Science and Technology, 2018, 72, 14–24.
  • [22]. Enconniere J., Ortiz-Carretero J., Pachidis V., Mission performance analysis of a conceptual coaxial rotorcraft for air taxi applications, Aerospace Science and Technology, 2017, 69, 1– 14.
  • [23]. Lyu W.L., Xu G.H., Interactional Effect of Propulsive Propeller Location on CounterRotating Coaxial Main Rotor, Journal of Aircraft, 2018, 55, 6.
  • [24]. The airfoiltools website. [Online]. Available: http://airfoiltools. Com /airfoil /details? airfoil= naca4415-il, 2016.
APA GÖV İ (2020). Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. , 487 - 502. 10.31202/ecjse.660136
Chicago GÖV İbrahim Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. (2020): 487 - 502. 10.31202/ecjse.660136
MLA GÖV İbrahim Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. , 2020, ss.487 - 502. 10.31202/ecjse.660136
AMA GÖV İ Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. . 2020; 487 - 502. 10.31202/ecjse.660136
Vancouver GÖV İ Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. . 2020; 487 - 502. 10.31202/ecjse.660136
IEEE GÖV İ "Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor." , ss.487 - 502, 2020. 10.31202/ecjse.660136
ISNAD GÖV, İbrahim. "Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor". (2020), 487-502. https://doi.org/10.31202/ecjse.660136
APA GÖV İ (2020). Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. El-Cezerî Journal of Science and Engineering, 7(2), 487 - 502. 10.31202/ecjse.660136
Chicago GÖV İbrahim Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. El-Cezerî Journal of Science and Engineering 7, no.2 (2020): 487 - 502. 10.31202/ecjse.660136
MLA GÖV İbrahim Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. El-Cezerî Journal of Science and Engineering, vol.7, no.2, 2020, ss.487 - 502. 10.31202/ecjse.660136
AMA GÖV İ Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. El-Cezerî Journal of Science and Engineering. 2020; 7(2): 487 - 502. 10.31202/ecjse.660136
Vancouver GÖV İ Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor. El-Cezerî Journal of Science and Engineering. 2020; 7(2): 487 - 502. 10.31202/ecjse.660136
IEEE GÖV İ "Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor." El-Cezerî Journal of Science and Engineering, 7, ss.487 - 502, 2020. 10.31202/ecjse.660136
ISNAD GÖV, İbrahim. "Rotor Spacing and Blade Number Effect on the Thrust, Torque, and Power of a Coaxial Rotor". El-Cezerî Journal of Science and Engineering 7/2 (2020), 487-502. https://doi.org/10.31202/ecjse.660136